

## ERICSSON'S 5G NETWORK RESEARCH

Zoltán Turányi 5G Expert Ericsson Research, Hungary

## DEMAND 2020











Devices & Consumers

Applications & Industry

Service Providers

Network

## INDUSTRY TRANSFORMATION



Traditional Industries



Digitalize & Mobilize

Transformed Industries





## EVOLUTION TOWARDS 2020





## 5G REQUIREMENTS







3GPP requirements expected in end-2016 IMT-2020 requirements expected finalized in mid-2017

## ERICSSON'S 5G APPROACH



5G as a Global Standard

LTE + new 5G radio

Industry Collaborations

System view on 5G

Standards,
Open Source
& industry
alliances

Academia and Research Institutes





## 5G RADIO CONCEPT

### 5G RADIO ACCESS ~2020





## NX - KEY TECHNOLOGY FEATURES MANY ALSO APPLY TO LTE EVOLUTION



Flexible, scalable and future-proof design



Ultra-lean design



Energy efficient: minimize network transmissions not directly related to user data delivery



## ULTRA-LEAN DESIGN



Minimize network transmissions not directly related to user-data delivery



- Higher achievable data rates
- Enhanced network energy performance
- Future-proof design

### NX PHY DESIGN



#### High degree of symmetry

- Low-power base stations similar to devices
- Integrated D2D and radio based backhaul



#### Access schemes FDD/TDD? **Mainly FDD Mainly TDD** 1 GHz 3 GHz 10 GHz 30 GHz 100 GHz

#### Time-domain structure

- Physical mapping enabling fast detection/decoding
- Self-contained subframes

**TDD** 

Avoid strict timing relations between subframes

One short subframe (~100 of µs) Example: DL data ACK/NAK, CSI, ...

#### Waveform

OFDM with flexible numerology





## BEAMFORMED TRANSMISSION



To enable the capacity, data rate, and coverage needed in the 5G era



For both high and low frequencies

For both NX and LTE

#### Beam-centric NX design

- Self-contained data transmissions
- "Beam mobility" mobility between beams rather than nodes
- System plane matched to beam-formed user plane

## ACCESS/BACKHAUL INTEGRATION



#### Today: Extensive use of radio backhaul

 Line-of-sight links to macro sites using dedicated technology in dedicated high-frequency spectrum



## **Tomorrow:** Large number of low-power nodes

- Wireless backhaul must extend to non-LOS conditions
- Access link will extend to higher frequencies



Access and backhaul are becoming more similar

#### **Access/Backhaul integration**

- Same technology for access and backhaul
- Joint spectrum pool for access and backhaul



- More efficient utilization of available spectrum
- Reduced operation and maintenance effort

## DEVICE-TO-DEVICE CONNECTIVITY



- Device-to-device connectivity as a further step of extreme densification
- An integrated part of the overall radio-access network
- Under network control
- When beneficial from an efficiency or service-level point-of-view



## HIGH FREQUENCY CHARACTERISTICS











## NX/LTE INTERWORKING









Tight interworking between LTE and NX is key to great end user experience

## NX/LTE INTERWORKING



- NX on the higher frequency ranges
  - Coverage and performance reasons
- Support co-sited and non-co-sited deployments
- Supported using dual connectivity solutions
  - excellent mobility support using control-plane diversity
  - high user-plane throughput using user-plane aggregation or fast switching (depending on the scenario)







## WIDE RANGE OF REQUIREMENTS

#### MASSIVE MTC











SMART AGRICULTURE



#### CRITICAL MTC







INDUSTRIAL APPLICATION & CONTROL



REMOTE MANUFACTURING, TRAINING, SURGERY

LOW COST, LOW ENERGY SMALL DATA VOLUMES MASSIVE NUMBERS ULTRA RELIABLE VERY LOW LATENCY VERY HIGH AVAILABILITY

## SOLUTIONS FOR CELLULAR IOT



**GSM-EC** 

Global solution for Cellular IoT



Supported on legacy GSM equipment



automation

Leverage existing module eco-system



NB-IoT

Part of LTE evolution to 5G

LTE CAT-M

Scalable ultra low-end Cellular IoT solution



Ultra-low bit rates & extreme coverage



Native narrowband LTE solution



Broadest range of Cellular IoT capabilities





Wide range of bit rates enabling advanced applications





Efficient co-existence with MBB traffic









OPERATE AS
ONE
NETWORK

## PERFORMANCE DIVERSIFICATION ON THE ROAD TO 5G





## DEVICE ENERGY EFFICIENCY



- Example: LTE Rel-12 power-saving mode
  - UE performs periodic tracking area update (TAU) after which it stays reachable for paging during a configurable time
  - Otherwise the UE stays in a power-off like mode, not reachable, but still registered

| Reachability (TAU cycle) | UL data inter-arrival time |            |            |
|--------------------------|----------------------------|------------|------------|
|                          | 15 min                     | 1 hour     | 3 hour     |
| 15 min                   | 9.2 years                  | 10.0 years | 10.2 years |
| 1 hour                   | 9.2 years                  | 16.1 years | 16.7 years |
| 3 hour                   | 9.2 years                  | 16.1 years | 19.4 years |

Cell edge, 64/84 kb/s UL/DL, 2xAA with 4% self-discharge



## COST OF GUARANTEEING HIGH RELIABILITY



High reliability (e.g.  $10^{-5} - 10^{-9}$ )

50-90 dB fading margin

#### Rayleigh fading channel



## REDUNDANCY THROUGH DIVERSITY



- Diversity may be obtained through
  - -spatial diversity, and
  - -frequency diversity
- Time diversity difficult due to latency constraint
- Coding needed to fully exploit frequency and transmit diversity

#### Rayleigh fading channel



**Diversity** is key for ultra-reliable communications



# NETWORK ARCHITECTURE

## 5G READY CORE NETWORK COMPONENTS



Management & Orchestration, Analytics & Exposure











## EVOLUTION OF THE CONVERGED NETWORK





## NETWORK SLICING





1000X
5X Mobile Data Volumes 10X
Lower Latency Battery Life
10-100X
End-user Data Rates
Connected Devices



A common network platform with dynamic and secure Network Slices

## NETWORK SLICING





## ORCHESTRATION







Network Slice Resources

Access Nw Function OSS/BSS

Transport Cloud

## WHAT IS IN THE SLICE? - PRINCIPLES >



- The architecture shall be flexible
  - It shall not mandate certain combination and/or location of functions
    - > Today we have to co-locate all functions of a node
    - > Any change must go through 3GPP
    - > Look, what it led to in case of LIPA or SIPTO
  - It shall not mandate the existence or lack of any function
    - > Should be easy to add/remove functions
      - E.g., no mobility support for this device
  - It shall be able to utilize distributed cloud (easy deployment of VMs)
  - It shall enable programmatic composition
    - > Even on a per-flow basis

## (BRIEF SDN ASIDE) DATA PLANE MODEL



- The Data Plane Model is what the CP sees from the DP
  - The DP presents itself as an abstract machine
  - The CP issues commands to this abstract machine
- > Selection of the right DP Model is key for SDN
  - Much more important than the protocol
  - Needs to be somehow standardized/specified for multi-vendor SDN
- > Example: OF 1.0
  - The DP is capable of matching 15 fields and based on the result either forward or drop the packet or send it to the controller
  - OF also specifies a protocol
- > Example: Forces
  - No DP Model is specified (in forces called a Library of primitives)
  - Only a protocol is specified leaving the Library free

### DP MODEL GRANULARITY



- High-level models
  - A few customizable (but perhaps complex) functions
  - Example: OpenFlow 1.x, Ethernet chips
  - Not very flexible, but probably enables high performance implementation
- Mid-level models
  - Small pieces of functionality composed by the Control Plane
    - > E.g., IPv4 longest prefix match lookup, IPv4 header sanity check
  - Example: Forces, Some OF 2.0 proposals
  - Quite flexible, but still abstract, probably can utilize network processors, as well
- > Low-level models
  - Fully programmable data plane
    - > The Control Plane can download code
    - Need to address many low-level issues
      - Memory layout, NPU specific instructions or properties (e.g., 64-bit?)
  - Example: assembly, P4
  - Absolutely requires network processors

## DP MODEL APPLICABILITY



"Classic packet processing"

Balance flexible and fast

- Moderate number of functions
- <u>Mid-level</u> model: compose fast primitives



"Cheap silicon"

High-level model with simple functions

- · Can only do a few, fixed things
- But do them fast & cheap

"Distributed computing"

Probably generic purpose CPUs & disks

- Distributed, mini-DCs
- <u>Low-level</u> model: full programmability

Different parts of the network requires a different SDN approach.

## (BACK TO ARCHITECTURE) PRINCIPLES



Functionality in two conceptual layers

#### **Actual functions**

(policing, QoS marking, DPI, charging, encryption (PDCP), mobility, parental control, cache, idle mode buffering, virus filter, etc..)

## Mobile Service Chaining

(Functionality to chain these functions, execution optimization when co-located, support for context transfer at mobility)

#### 10K FEET VIEW





- There are small processing functions chained together
  - Typically smaller than a VM/container
  - One VM/container processes many users
  - Co-located functions execute in an optimized way (zero copy)
- Collectively they implement core functions and more
  - Some service network stuff (e.g., parental control)
  - Some radio stuff (e.g., PDCP termination)
- A logically centralized control plane
  - Maps a user to a pre-established VM/container running the given function
  - Configures that function for the user
  - Controls chain forwarding
  - Requests scale-in/out

#### EXAMPLE CHAINS FOR A USER Central site IP services network peer peer peering **CL-DL** F3 IAP IAP Internet CL-DL SFF SFF F2 BS site CL-UL BS **IAP** peer SFF IP services **CL-DL** network device F4 Local site

# BEYOND SERVICE CHAINING USER GRAPHS



- Every user has (potentially) a unique graph
- This graph needs to be expressed
- The graph may change depending on events (e.g. adding an additional PDN connection)
- A fairly wide range of function size



#### RESEARCH CONCEPT FOR CORE NETWORK





### THE NEW NETWORK

SOFTWARE PRINCIPLES

Classic NFV



#### Decomposing

- Data Plane
- Control Plane
- Analytics
- Applications
- Orchestration



#### **Decomposition**



"Same concept as microservices, but different realization"

### HANDOVER WITH CTX TRANSFER





- Functions support context extraction/insertion
- Controller can move contexts
  - Buffer for lossless handovers
  - Buffer more for lossess and reordering free handovers
- Many levels potentially
- Other uses of live state migration
  - Rearrange centralized/distributed
  - Load balancing
  - Code upgrade
  - Scheduled maintenance

### PROCEDURE

- Implemented in Click
- How much intelligence at the DP node?
- What to expose on the CP/UP interface?





Balázs Pinczel, Dániel Géhberger, **Zoltán Turányi**, Bence Formanek <u>Towards High Performance Packet Processing for</u> <u>5G.</u>' *IEEE Conference on Network Function Virtualization* & *Software Defined Networks (IEEE NFV-SDN)*, November 18, 2015, Los Angeles, USA

### ANALYTICS



- Collection and evaluation of data for the purpose of gaining insight
- A network is ideal target
  - Generates a lot of data
  - Correlation is required to really know what is going on
  - Insight is actually useful
- Recent advances in analytics enable real-time KPI calculation
  - E.g., correlate all events of a subscriber with momentary bandwidth to a "satisfaction index"
  - -~100ms timescale

#### THE GAP - ANALYTICS AND NETWORKING



Separated location of data and action lack of analytics & business information in network actions

Moving data near to the action analytics driven, programmable network behavior





#### DESIRED ARCHITECTURE





- Top level analytics extended with node local components
- Flexible environment to deploy analytics applications anywhere
- Enables closed loop use cases with actions on network level

#### EXAMPLE DATA FLOW





### ARCHITECTURE IMPACT



- Analytics data as first class citizen in network nodes
  - Base decisions on readily available KPIs
  - Not as an afterthought
  - Not 15 mins later
- Remove current information barriers
  - Currently data is distributed in the system
  - Certain parts not allowed to know parts
  - Legacy limitation due to performance
  - No need, we can do better now

#### Core network

Policy & charging data, subscriber IDs, charging details,

. . . .



#### Radio network

Radio situation & parameters bottleneck congestion info, location information,

. . . .

### ERICSSON'S 5G APPROACH



5G as a Global Standard

LTE + new 5G radio

Industry Collaborations

System view on 5G

Standards,
Open Source
& industry
alliances

Academia and Research Institutes





## ERICSSON