

Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics
Department of Networked Systems and Services

Dániel László Vajda

MACHINE LEARNING-BASED
ANOMALY DETECTION

BSc thesis

SUPERVISORS:

Dr. Adrián Pekár
Dr. Károly Farkas

BUDAPEST, 2020

Budapesti Műszaki és Gazdaságtudományi Egyetem

Villamosmérnöki és Informatikai Kar
Hálózati Rendszerek és Szolgáltatások Tanszék

1117. Budapest, Magyar tudósok körútja 2. I. Ép. B. 121.
Telefon: 463-3261 Fax: 463-3263
URL: http://www.hit.bme.hu

SZAKDOLGOZAT FELADAT

Vajda Dániel László
szigorló villamosmérnök hallgató részére

Machine Learning-Based Anomaly Detection

Detecting anomalous behavior on time series data is under active research today. It has potentials in
several domains, such as network performance monitoring for abnormal network behavior detection,
preferably in real-time. However, most of the existing anomaly detection approaches require manual
intervention and extensive domain knowledge to appropriately tune the detection engine, which is far
from being a handy and generic solution.

NETvisor Ltd., an SME active in ICT systems integration in Hungary, has been pursuing research in
network telemetry and anomaly detection related topics. As part of this activity, a network telemetry
analytics system has been developed and implemented recently to receive, process, store, and
visualize telemetry data. The next step is to build an intelligent anomaly detection engine, which can
automatically adapt to pattern changes in the collected time series data and detect abnormal behavior.

The candidate’s assignment is to develop and implement such an intelligent anomaly detection
engine. Thus, in the frame of the bachelor thesis work, the following tasks have to be completed:

x Overview the state-of-the-art anomaly detection approaches;
x Design and implement a machine learning-based anomaly detector;
x Test and validate the developed solution;
x Compare the performance of the developed solution to other state-of-the-art anomaly

detection approaches using test data sets collected from different domains;
x Examine and discuss the possibilities for further improvements.

Tanszéki konzulensek: Dr. Farkas Károly, egyetemi docens

 Dr. Pekár Adrián, egyetemi adjunktus

Budapest, 2020. szeptember 20.

Dr. Imre Sándor
egyetemi tanár
tanszékvezető

Konzulensi vélemények:
Tanszéki konzulens: Beadható, Nem beadható, dátum: aláírás:

 2

Table of contents

Hallgatói nyilatkozat ... 4

Kivonat ... 5

Abstract .. 6

1 Introduction .. 7

2 Related Work ... 9

3 Neural Networks .. 12

3.1 Concept ... 12

3.2 Recurrent Neural Networks .. 14

3.2.1 Vanishing Gradient .. 14

3.3 Long Short-Term Memory .. 15

4 State-of-the-art Algorithms Based on LSTM .. 16

4.1 RePAD .. 16

4.1.1 LSTM Model ... 16

4.1.2 Details of the Algorithm .. 16

4.2 ReRe .. 19

4.3 Limitations of ReRe .. 20

5 Alter-Re2 ... 22

5.1 Ageing ... 22

5.2 Window-mode... 23

5.3 Automated hyperparameter tuning ... 25

5.3.1 Devising a metric for the size of data points used ... 25

5.3.2 Automated tuning algorithm steps ... 27

5.3.3 Detection of extreme parameter values ... 30

6 Experiments .. 33

6.1 Preliminaries ... 33

6.2 Reference Measurement.. 35

6.3 ReRe vs. Alter-Re2 .. 36

6.4 Performance Maintenance through Different Data Types 41

6.5 Evaluation of automated hyperparameter tuning .. 43

7 Discussion ... 46

8 Research Implications ... 48

9 Conclusions ... 50

 3

10 Acknowledgements .. 51

11 List of Figures ... 52

12 Acronyms .. 53

13 Bibliography ... 54

 4

Hallgatói nyilatkozat

Alulírott Vajda Dániel László, szigorló hallgató kijelentem, hogy ezt a szakdolgozatot

meg nem engedett segítség nélkül, saját magam készítettem, csak a megadott forrásokat

(szakirodalom, eszközök stb.) használtam fel. Minden olyan részt, melyet szó szerint,

vagy azonos értelemben, de átfogalmazva más forrásból átvettem, egyértelműen, a forrás

megadásával megjelöltem.

Hozzájárulok, hogy a jelen munkám alapadatait (szerző(k), cím, angol és magyar nyelvű

tartalmi kivonat, készítés éve, konzulens(ek) neve) a BME VIK nyilvánosan hozzáférhető

elektronikus formában, a munka teljes szövegét pedig az egyetem belső hálózatán

keresztül (vagy hitelesített felhasználók számára) közzétegye. Kijelentem, hogy a

benyújtott munka és annak elektronikus verziója megegyezik. Dékáni engedéllyel

titkosított diplomatervek esetén a dolgozat szövege csak 3 év eltelte után válik

hozzáférhetővé.

Kelt: Budapest, 2020. 12. 11.

 ...…………………………………………….
 Vajda Dániel László

 5

Kivonat

Ahogyan egyre több és több eszköz csatlakozik számítógépes hálózatokhoz, úgy

lesz azok infrastruktúrája egyre komplexebb. Ezen hálózati eszközök, rendszerek és

szolgáltatások folyamatos felügyelete manapság lényegesebb, mint valaha. Ennek számos

haszna lehet, mint például üzemzavar előrejelzése; leállások elkerülése azáltal, hogy előre

azonosítjuk azok jeleit; rendszerek teljesítményének monitorozása; továbbá rendszerek

biztonságának felügyelete és az esetleges támadások észlelése.

Hagyományos módszerekkel azonban ezeket a funkciókat megbízhatóan,

hatékonyan, valós időben megvalósítani koránt sem egyszerű feladat. Ezt segíti elő a

hálózati telemetria paradigmája, mely egy modern eljárás a hálózati eszközökből

kinyerhető, idősor alapú telemetria adatok gyors, hatékony és automatikus begyűjtésére.

A begyűjtött adatokat azonban fel kell dolgozni, hogy képesek legyünk detektálni a

helytelen működésre utaló jeleket, amit gépi tanuló algoritmusok segítségével lehet

hatékonyan megvalósítani. Ezt a folyamatot nevezzük anomáliadetekciónak.

Ez a dolgozat kifejezetten az anomáliadetekcióra összpontosít, új megvilágításba

helyezve annak idősor alapú telemetria adatokon történő használatát. Az irodalomkutatás

során az ún. Long Short-Term Memory (LSTM) alapú, ReRe elnevezésű algoritmust

azonosítottuk, mint a jelenleg elérhető leghatékonyabb eljárás. Azonban vizsgálataink azt

mutatták, hogy még ez az eljárás is számos limitációval rendelkezik. Ezért a dolgozatban

bemutatjuk az algoritmus általunk továbbfejlesztett, Alter-Re2-nek elnevezett változatát,

melyben az eredeti eljárást az ún. öregítés módszerével, illetve az adatok egy

csúszóablakban való feldolgozásával egészítettük ki. Egy, a bevezetett módszerek

hiperparamétereit automatikusan beállító algoritmust is kidolgoztunk. Az így elért

teljesítményjavulás ígéretes, az Alter-Re2 algoritmus átlagosan háromszor jobban, de

legalább úgy teljesített, mint a ReRe tíz különböző adatsoron végzett vizsgálatainkban.

Továbbá a dolgozatban kitérünk arra, hogyan függ a ReRe és az Alter-Re2

algoritmusok megbízhatósága és pontossága az elemzett adatsor típusától. Kategóriákba

soroljuk a feldolgozott adatsorokat az adatok mintázatai alapján, majd elemezzük az

algoritmus működését kategóriánként.

Meggyőződésünk, hogy az Alter-Re2 előnyösen használható számos területen,

ahol gyors és pontos anomáliadetekcióra van szükség, mint például a hálózati telemetria,

IoT szenzorfolyamok, behatolók, hibák, csalások észlelése esetén.

 6

Abstract

The complexity of network infrastructure is growing in tandem with the number

of connected devices. Infrastructure monitoring is essential as many managerial-related

tasks highly depend on it. These include alerting partial or total system malfunction,

outage prevention based on predictive identification of such situations, performance

tracking, and, last but not least, security detection of system penetration.

However, it has become far from obvious how to achieve timely, reliable, and

sound infrastructure monitoring using traditional approaches. Telemetry has been

developed to streamline this process. Network devices using it generate time series

telemetry data that is streamed to a central collector. This streaming time-series data has

to be analysed, plausibly by machine learning-based algorithms, to detect indications of

abnormal behaviour and notify administrators. This process is called anomaly detection.

In this study, we focus on anomaly detection on time-series telemetry data. We

rigorously examined state-of-the-art anomaly detection methods. Specifically, we

assessed ReRe, a Long Short-Term Memory-based (LSTM-based) algorithm. Although

the algorithm was claimed to achieve high efficacy, our experiments revealed several

limitations when applied on time-series data. Motivated by these findings, we propose in

this study a modified version of ReRe, called Alter-Re2, to overcome these limitations.

We introduce the concepts of ageing and sliding window as the key enablers of our

extensions. Additionally, we also automated the hyperparameter tuning of our approach

that can adjust the initial configuration of the algorithm. Consequently, the configuration

converges to the most optimal values in just a few steps, whereas without this automation

the values would need to be set manually. The resulted performance improvements are

promising; compared to ReRe, our Alter-Re2 can achieve three times better, but never

worse performance on average when evaluating using ten different datasets.

Furthermore, we also discuss how the data type being analysed impacts the

reliability and precision of ReRe and Alter-Re2. We were able to create categories based

on specific data patterns and draw conclusions on ReRe for each. We hope to shed new

light on time-series anomaly detection and stimulate further research in the field.

Our approach is advantageous in application domains where timely and accurate

anomaly detection is essential, such as in network telemetry, IoT sensor streams,

intrusion, fault, and fraud detection related tasks.

 7

1 Introduction

Nowadays, infrastructure monitoring, including networks, systems, and services,

is more critical than ever before. It is essential for several reasons, such as alerting partial

or total system malfunction, outage prevention based on predictive identification of such

situations, performance tracking, and, last but not least, security detection of system

penetration.

However, with the exponential increase in the number of interconnected devices

and traffic volume, it has become far from obvious how to achieve timely, reliable, and

sound infrastructure monitoring. It requires understanding the details of processes inside

the systems and recognize how they influence each other or the whole infrastructure. The

concept of network telemetry has been introduced to streamline this goal. It allows

automated, fast, and simultaneous collection of a wide variety of time-series data from a

large number of devices.

Machine learning techniques can process, understand, and classify problematic

infrastructure behaviours, even in massive data volumes. Despite recent significant

advances in machine learning, their application to anomaly detection remains poorly

understood and investigated in the network telemetry domain. This work focuses

specifically on that, i.e., it attempts to shed new light on anomaly detection on time-series

telemetry data.

Broadly speaking, measurement data are created by a generating process. If this

generating process behaves unusually due to the system’s abnormal behaviour or the

entity that impacts the generating process, it produces anomalies. The manifestation of

anomalous behaviour can be identified by observing the generated time-series data.

Anomaly detection is a critical component of network and services management as it can

provide useful insights into the operation of the network and its components.

Our survey of anomaly detection on time-series data yielded ReRe [2], a Long

Short-Term Memory (LSTM) based algorithm, as the most efficient state-of-the-art

approach. It is claimed to achieve high accuracy in detecting abnormal behaviour while

minimizing false positives and re-trainings. However, our evaluation revealed several

limitations when ReRe was applied on time-series data. As such, we extended ReRe with

two additional features to improve its efficacy. We named our improved algorithm Alter-

Re2. The first feature ensures that the collected data ages out; thus, its weight decreases

 8

as time passes, allowing faster adaption to short-term history and more precise anomaly

detection. The second feature serves the purpose of a sliding window that reduces the

anomaly detector’s resource demands. Furthermore, we also introduce two

hyperparameters to the algorithm whose adjustment is automated; eventually leading to

optimal efficiency with no need for manually configuration.

The evaluation of Alter-Re2 has shown promising results. We could achieve

approximately three times higher, but never worse accuracy in detecting anomalies

compared to the original ReRe algorithm experimenting with ten different time-series

datasets. Not only could we eliminate issues preventing real-time use, but we were also

able to enhance sensitivity to smaller amplitude and length anomalies. Our automated

parameter tuning algorithm was shown to be successful at setting appropriate values after

some timesteps for two hyperparameters – the ageing and sliding window. Furthermore,

we also observed that this LSTM based anomaly detection algorithm was only directly

applicable to certain data patterns. Presumably, the patterns of normal and abnormal

behaviour depend on the type of data being analysed. However, the validity of this

hypothesis has yet to be further investigated and will be part of our future work.

Nevertheless, we argue the strong applicability of our approach in real-world scenarios.

The rest of this study is organized as follows. In Section 2, we discuss related

works from the field of anomaly detection on time-series, especially network telemetry-

related, data. In Section 3, we explain the basic principles of neural networks and their

key concepts, including Recurrent Neural Networks (RNNs) and Long Short-Term

Memory. Section 4 describes two state-of-the-art real-time anomaly detection algorithms

on time-series data from 2020. Specifically, we discuss RePAD [1] and its improved

version called ReRe [2] in detail. In Section 5, we present Alter-Re2, our approach to

address the issues discussed above. In Section 6, we present a number of experiments to

compare and contrast the original ReRe and our Alter-Re2 algorithms. Section 7 is a

discussion on the different types of datasets on which these algorithms can perform well.

In Section 8, we discuss further research implications and lay out possible future work

directions. And finally, we draw conclusions in Section 9.

 9

2 Related Work

We originally focused on anomaly detectors deployed in network telemetry

streams. However, we observed that there is only a handful of research in this area. Putina

et al. [3] at Cisco developed a streaming telemetry-based anomaly detection engine for

BGP anomalies; however, it uses a legacy clustering algorithm called DenStream [7],

published in 2006, with limited performance. Furthermore, this detector only deals with

BGP telemetry data. DenStream classifies incoming data into clusters of arbitrary shape.

These are made up of core and outlier microclusters. An anomaly is detected when a data

point is merged into an outlier microcluster. DenStream requires the calculation of certain

parameters based on the whole dataset, so this method is not adapted for real-time use.

We found other, less applicable works as well related to anomalies and computer

networks such as [9], [10], [11]. Ye et al. [9] use a statistical approach to detect zero-day

attacks and malicious intent. The paper claims that machine learning techniques miss the

bigger picture of network behaviour. Kaiafas et al. [10] use multiple unsupervised

machine-learning algorithms in an ensemble to identify fraudulent private exchange

phone calls, yet their approach only works on offline data. Lazaris and Prasanna [11] aim

to predict fine-grained network traffic using an LSTM neural network model based on

Software-Defined Networking.

As we did not come across any research directly applicable, we made a shift

towards generic real-time anomaly detection algorithms. AnomalyDetectionTs (ADT)

and AnomalyDetectionVec (ADV) are two anomaly detection algorithms, developed by

Twitter, and available in their GitHub repository [8]. ADT works on time-series data,

while ADV is designed for vectors without timestamp information. These algorithms

employ statistical-based approaches, therefore require many data points. This makes them

less applicable for streaming time-series data. ADV and ADT are parameter-sensitive

algorithms and require a human expert to set appropriate values to achieve proper

detection.

 10

Tan et al. [6] developed a fast anomaly detection algorithm for streaming data.

Their method, published in 2011, makes use of Half-Space Trees for machine learning. It

processes data in one pass, requires constant memory and performs fast model updates.

The algorithm has to be trained on normal data to be able to identify anomalies; that way,

it cannot perform unsupervised learning. It operates using two consecutive windows, data

is handled in batches instead of constantly updating.

Ahmad et al. [5] developed an unsupervised real-time anomaly detector for

streaming data. In their paper, published in 2017, the authors use the Hierarchical

Temporal Memory (HTM) algorithm to detect anomalies in real-time streaming data.

HTM is based on neuroscientific research. It is claimed to be extremely tolerant of noisy

data and to adapt to changes in the statistics of the stream. Additionally, it is said to detect

subtle temporal anomalies while minimizing false positives. There are additional

statistical calculations needed to adapt HTMs to our task, which makes it domain-

dependent.

Maciag et al. [4] published their work in 2019. Their method performs

unsupervised anomaly detection in stream data. It uses evolving Spiking Neural Networks

(eSNN) for online unsupervised anomaly detection. The concept of eSNNs heavily rely

on the way a human brain works. The input layer transforms the data into spikes that can

be sent between neurons. The output layer is a repository; neurons are added or merged

to an existing one while training. Anomaly detection is based on data classification like

in [7]. It works only on univariate data streams.

Greenhouse [12] is an algorithm that combines state-of-the-art machine learning

and data management techniques for anomaly prediction over high volumes of time-series

data. The term ‘zero-positive’ means that the algorithm has to be trained on normal data

but does not require labelled anomalies. Greenhouse uses a look-back, predict-forward

approach to detect anomalies. This means, it employs an LSTM model [13] to predict

new values based on old ones, then compares the prediction to the actual data point.

RePAD (Real-time Proactive Anomaly Detection for Time Series) [1] is an

improvement of Greenhouse that eliminates the need for normal training data. ReRe (A

Lightweight Real-time Ready-to-Go Anomaly Detection Approach for Time Series) [2]

is an upgrade of RePAD by the same authors that aims to eliminate false positive anomaly

detections. We give a detailed description of these two methods in Section 4.

 11

In summary, we were unable to identify any approach directly aimed at anomaly

detection in streaming telemetry data using modern detection algorithms. Generic real-

time anomaly detectors, however, have seen a major improvement in the last decade.

Nevertheless, most of these methods fall short in a few important details, as some cannot

perform anomaly detection unsupervised, others need domain knowledge when setting

certain parameters and some cannot adapt to changing behaviours. We chose ReRe as the

basis of our research, as it fulfils all of our requirements.

 12

3 Neural Networks

We start with a brief overview of artificial neural networks, emphasizing on one

subcategory, the Long Short-Term Memory Recurrent Neural Networks. This

information is necessary to gain a better understanding of algorithms that build neural

network models, often used for data prediction.

3.1 Concept

A neural network1 consists of layers of interconnected neurons that form a circuit,

often represented as vertices and edges of a graph. A simplified version of a feedforward

neural network can be seen in Figure 3-1. The term ‘feedforward’ refers to the fact that

connections in such networks never form a cycle. Refer to the book “An Introduction to

Neural Networks” [14] for a more detailed explanation.

Figure 3-1: Simplified layout of a feedforward neural network.

As it is apparent from Figure 3-1, one neuron can have many input and output

connections. Each connection has a weight value assigned to it that represents how

important or emphasized that connection is. Information propagates through these

networks the following way: Data enters the neural network at the input layer that encodes

it into the values of nodes. A so-called propagation function then calculates an input value

for each neuron. This value is the weighted sum of the output of all the neurons from the

previous layer that have a connection to the given neuron. The output layer then

transforms information from a set of numbers in the layer into the desired format.

1 This study refers to artificial neural networks as simply ’neural networks’.

input layer hidden layer(s) output layer

 13

When training a neural network model, we need to have a training dataset (also

referred to as labels or ground truth) that assigns correct output values to input values.

Using such a dataset is called supervised learning, and the main task is to adjust

connection weights (and other possible values) in order to minimize some form of an

error in the output (e.g., how close a prediction is to the real value).

This adjustment is made through the algorithm of backpropagation using a

predefined loss function that determines a way to evaluate each output compared to the

training dataset. Backpropagation works by starting at the output layer and computing the

gradient of the loss function with respect to each weight, then it moves iteratively layer

by layer towards the input tuning weights and calculating gradients trying to minimize

the loss function usually by the method of gradient descent [20]. Thus, training is done in

three steps:

1. A forward pass on the network, where a prediction is made.

2. The prediction is compared to the ground truth using the loss function.

3. A backwards pass is performed, where the weights are adjusted to

minimize the loss function.

In neural networks, the number of epochs is a key factor that determines how

quickly a model can be trained. However, estimating the optimal number of epochs is not

simple and yields a trade-off between underfitting and overfitting. On the one hand, if the

epoch number is too low, the neural network does not have enough passes to learn patterns

in the training data, thus leading to a poor performing model. This is called underfitting.

On the other hand, if it is too high, the neural network will be tuned too exactly to the

training data and will not function that well on other data points. This is called overfitting.

This trade-off is one of the key challenges in machine learning.

 14

3.2 Recurrent Neural Networks

The main difference between RNNs and simple feedforward neural networks is a

so-called hidden state. The main purpose of it is to enable the network to ‘remember’

previous states by creating a feedback loop in the hidden layer(s). Figure 3-2 displays the

recursive and unfolded representation of RNNs [19], where each timestep can be

considered a new network model with input from the previous one.

Figure 3-2: Structure of RNNs. [19]

A hidden state is a memory unit that is capable of storing information from the

previous step. That is why RNNs are well-suited for applications on time-series data,

where it is crucial to maintain some understanding of previous timesteps to produce a

meaningful output. For example, when attempting speech recognition, it is important to

keep in mind previous words in a sentence to understand the meaning of the whole

sentence instead of just words one by one. Similarly, when using RNNs for time-series

prediction, it is critical to ‘remember’ the influence of older training samples, not just the

last one.

3.2.1 Vanishing Gradient

There is one issue with RNNs, however, that makes them almost unusable in their

original form for real-world applications, namely the vanishing gradient problem.

Because of the way neural networks are trained (refer back to Section 3.1), RNNs have

what is called a ‘short-term memory’. This can be understood using the unfolded

representation visible in Figure 3-2, where each timestep is thought of as a layer in the

network. That is why, with RNNs, the training algorithm is called backpropagation

through time. Gradient values shrink exponentially as it moves back through time, which

 15

means that older timesteps are almost not at all taken into account when adjusting weights

(the network ‘forgets’ older samples).

For more information on RNNs and LSTM networks refer to [15], titled

“Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory

(LSTM) network”. This work explains all important concepts and methods related to

these neural networks.

3.3 Long Short-Term Memory

The concept of LSTM RNNs was first developed by S. Hochreiter and J.

Schmidhuber in 1997 [13]. Their goal was to mitigate the effects of the vanishing gradient

problem to enable more widespread applicability of RNNs. The key difference in the

structure of a simple RNN and an LSTM is in the neurons (also referred to as units or

cells). By introducing gates within the units, LSTMs are capable of controlling which

pieces of information to ‘remember’, and for how long. The structural comparison of an

RNN and an LSTM can be seen in Figure 3-3 [21]. The symbols within the gates denote

the different activation functions used by the gates that determine how the input of the

gate is processed (𝜎: sigmoid activation, 𝜙: tanh activation).

Figure 3-3: Comparison of the structures of RNNs and LSTMs. [21]

LSTMs managed to reduce the effects of the vanishing gradient to such a great

extent, that current machine learning research is very often based on the original or an

improved version of these neural networks. This is supported by the fact that 14𝑘 of the

total 17𝑘 citations of the original paper [13] were received in the previous two years.

 16

4 State-of-the-art Algorithms Based on LSTM

4.1 RePAD

RePAD [1] is a cutting-edge LSTM RNN-based algorithm designed for time-

series anomaly detection. It was published in March 2020 by Ming-Chang Lee et al. The

authors claim it is capable of detecting anomalies proactively in real-time, without any

domain knowledge.

RePAD uses short-term historical data points to predict the upcoming value; then,

it compares this prediction with the real value to determine if an anomaly is likely to

happen in the near future. RePAD can adjust detection thresholds dynamically, making it

well-suited to tolerate minor pattern changes as well. Its fast convergence (i.e., it can

detect anomalies soon after being turned on) and unsupervised training (i.e., it does not

require a labelled training dataset) sets it apart from previous approaches.

4.1.1 LSTM Model

One key part of RePAD is the LSTM model used for data prediction. If an LSTM

model has a complicated structure or the training data is large, training time increases

significantly, which limits real-time use. That is why the LSTM model used in RePAD

only has one hidden layer with 10 hidden units. Additionally, a fast-learning speed is

guaranteed by a learning rate of 0.15. As mentioned in Section 3.1, the number of epochs

is a key factor in determining the precision and speed of a neural network model. RePAD

employs the algorithm of Early Stopping [16] to choose the number of epochs

dynamically, to prevent overfitting and underfitting.

4.1.2 Details of the Algorithm

RePAD is based on a so-called ‘look back, predict forward’ approach. This means

that it takes the previous 𝑏 data points (𝑏 is the look-back parameter) and uses them to

predict the next 𝑓 data points (𝑓 is the predict-forward parameter). In paper [1], the

RePAD algorithm is stated with 𝑓 = 1 always. The algorithm can be broken down into

four steps that follow each other.

 17

Variables used in the explanation:

• 𝑏 or 𝐵: look-back parameter

• 𝑡: current timestep, starts from 𝑡 = 0

• 𝑣𝑥: data point at timestep 𝑥

• 𝑣�̂�: predicted data point for timestep 𝑥

• 𝑀, 𝑀′: LSTM models

• 𝐴𝐴𝑅𝐸𝑥: Average Absolute Relative Error at timestep 𝑥

• 𝑡ℎ𝑑𝑥: threshold value at timestep 𝑥

• 𝜇𝐴𝐴𝑅𝐸𝑥: the average of 𝐴𝐴𝑅𝐸𝑥 values at timestep 𝑥

• 𝜎𝐴𝐴𝑅𝐸𝑥: the standard deviation of 𝐴𝐴𝑅𝐸𝑥 values at timestep 𝑥

Equations for the algorithm:

𝐴𝐴𝑅𝐸𝑡 =
1

𝑡 − 𝑏 + 1 ⋅ ∑
|𝑣𝑦 − 𝑣�̂�|

𝑣𝑦

𝑡

𝑦=𝑏

 (1)

𝑡ℎ𝑑𝑡 = 𝜇𝐴𝐴𝑅𝐸𝑡 + 3 ⋅ 𝜎𝐴𝐴𝑅𝐸𝑡 (2)

𝜇𝐴𝐴𝑅𝐸𝑡 =
1

𝑡 − 𝑏 + 1 ⋅ ∑ 𝐴𝐴𝑅𝐸𝑦

𝑡

𝑦=𝑏

 (3)

𝜎𝐴𝐴𝑅𝐸𝑡 = √∑ (𝐴𝐴𝑅𝐸𝑦 − 𝜇𝐴𝐴𝑅𝐸𝑡)2𝑡
𝑦=𝑏

𝑡 − 𝑏 + 1 (4)

Step 1

if t < b – 1

In this step, RePAD collects data points passively.

Collected values: 𝑣0, 𝑣1, … , 𝑣𝑏−2, so exactly 𝑏 − 1 pieces.

Step 2

if t == b – 1

When time reaches the value 𝑏 − 1, RePAD trains an LSTM model 𝑀 using the

first 𝑏 data points (𝑣0, … , 𝑣𝑡 = 𝑣𝑏−1). RePAD then uses 𝑀 to predict 𝑣𝑡+1̂ = 𝑣𝑏+1̂.

 18

Step 3

if b – 1 < t < 2b – 1

For every timestep, RePAD calculates a so-called average absolute relative error

using Eq. (1).

Then it trains the LSTM model 𝑀 using the previous 𝑏 data points: 𝑣𝑡−𝑏+1, … , 𝑣𝑡.

𝑀 then is used to predict 𝑣𝑡+1̂.

Step 4

if t >= 2b – 1

Once RePAD gets to this step, it is already capable of detecting anomalies, for it

has at least 𝑏 number of 𝐴𝐴𝑅𝐸𝑥 values. Since 𝑏 is a small integer, RePAD has a short

preparation period. The following then happens with each new timestep:

RePAD calculates 𝐴𝐴𝑅𝐸𝑡 using Eq. (1).

It then calculates the 𝑡ℎ𝑑𝑡 threshold value using Eq. (2), which takes the average

of all 𝐴𝐴𝑅𝐸𝑥’s, then adds their standard deviation three times as seen in Eq. (3) and (4).

These two values (𝐴𝐴𝑅𝐸𝑡 and 𝑡ℎ𝑑𝑡) are then compared.

If 𝐴𝐴𝑅𝐸𝑡 ≤ 𝑡ℎ𝑑𝑡, that means the current data point 𝑣𝑡 is similar to the previous

ones, as 𝑀 was able to predict it to an appropriate precision level, there is no anomaly.

RePAD then uses 𝑀 to predict 𝑣𝑡+1̂.

However, if 𝐴𝐴𝑅𝐸𝑡 > 𝑡ℎ𝑑𝑡, there may be two different reasons for that. Either

the data pattern is slightly changing, or there is an anomaly. To make a decision, RePAD

trains 𝑀′ using the previous 𝑏 data points, then recalculates the 𝐴𝐴𝑅𝐸𝑡 error and 𝑡ℎ𝑑𝑡

threshold values. If 𝐴𝐴𝑅𝐸𝑡 > 𝑡ℎ𝑑𝑡 still holds, RePAD signals an anomaly to the user,

then uses 𝑀 to predict 𝑣𝑡+1̂, it discards 𝑀′. But if 𝐴𝐴𝑅𝐸𝑡 ≤ 𝑡ℎ𝑑𝑡 using the new model,

RePAD concludes that the data pattern is changing and replaces 𝑀 with 𝑀′, so that it can

predict new data points accurately.

Using this mechanism RePAD can adapt to small pattern changes in the data

stream. Additionally, the LSTM model only needs to be retrained when a pattern change

is detected, thus greatly reducing CPU load.

 19

4.2 ReRe

ReRe [2] is an improvement of RePAD [1], developed by the same authors. The

paper is currently available only as a preprint, its latest version uploaded in June 2020.

According to experiments in [1], RePAD suffers from a great number of false positive

anomaly detections (see Section 7 for our comments on false positives). ReRe attempts

to target exactly this issue.

ReRe employs two LSTM models instead of one that provide two levels of

detection sensitivity. These two models are deployed in two detectors (detector 1 and 2).

An anomaly or pattern change is only detected and signalled by the ReRe algorithm if

both detectors return the same detection for the given timestep.

Detector 1 works as RePAD (refer to Section 4.1.2 for more details). It acquires 𝑡

and 𝑣𝑡 values from the ReRe algorithm and produces signals ‘normal’, ‘pattern change’

and ‘anomaly’ as outputs. Internally, it stores and calculates 𝐴𝐴𝑅𝐸𝑡 and 𝑡ℎ𝑑𝑡 using

RePAD methods and equations. When it detects a pattern change, it retrains its own

LSTM model, 𝑀1 that it uses for data value prediction.

Detector 2 has a few key differences from RePAD. It uses the same algorithm

structure; it also acquires 𝑡 and 𝑣𝑡 from ReRe; the only change is in the input values for

𝐴𝐴𝑅𝐸𝑡 and 𝑡ℎ𝑑𝑡 calculations. Namely, detector 2 uses its own 𝑀2 LSTM model to predict

its own values. 𝑀2 is structurally identical to 𝑀1 but due to different retrain timesteps it

will produce different predictions. And the reason for the different pattern change

detection timesteps is the different calculation of the threshold 𝑡ℎ𝑑𝑡. Detector 2 uses only

𝐴𝐴𝑅𝐸𝑥 values for threshold calculation, where 𝑣𝑥 is considered ‘normal’ (no ‘pattern

change’ or ‘anomaly’) by itself. This one key difference means that it produces different

results and is able to disable anomalies detected by detector 1 (RePAD). We give a more

detailed evaluation of ReRe in Section 6.2.

 20

4.3 Limitations of ReRe

As described in Section 4, ReRe can only detect anomalies, when both detectors

have an 𝐴𝐴𝑅𝐸𝑡 value higher than 𝑡ℎ𝑑𝑡, and both detectors decide, there is no pattern

change. That means, normally, 𝐴𝐴𝑅𝐸𝑦 values are lower than 𝑡ℎ𝑑𝑦.

In the design of RePAD and subsequently ReRe, 𝐴𝐴𝑅𝐸𝑡 and 𝑡ℎ𝑑𝑡 values are

computed using Eq. (1) and (2). Both of these values include a sum that starts at a fixed

value, namely timestep 𝑦 = 𝑏 and ends at the current timestep 𝑦 = 𝑡. All terms in these

sums have an equal weight of 1, which means all terms have an equal priority in

determining current 𝐴𝐴𝑅𝐸𝑡 and 𝑡ℎ𝑑𝑡 values.

This results in an unfortunate consequence to the speed of anomaly detection.

Figure 4-1 illustrates this issue2. When the algorithm has started just recently, 𝐴𝐴𝑅𝐸𝑡

calculation has only a few (absolute relative error) terms to take the average of. This

means when an anomaly occurs in the data, and error terms instantly get large (due to the

big difference in the predicted and actual data points), 𝐴𝐴𝑅𝐸𝑦 values also get large fairly

quickly. This is the way how it should work for all timesteps.

Figure 4-1: The slope of AARE depends on the current timestep.

In Figure 4-1, this situation is illustrated on the left side of the graph. At timestep

𝑎1, there is an anomaly in the dataset. 𝐴𝐴𝑅𝐸𝑦 values start to rise quickly as new absolute

relative error terms are high, and there are only a few error terms to take the average of.

At timestep 𝑑1, the 𝐴𝐴𝑅𝐸𝑦 curve crosses the 𝑡ℎ𝑑𝑦 curve, and an anomaly is detected.

2 Note that the figure is exaggerated for better visibility. In reality, 𝑎1 and 𝑑1 are closer to each

other.

 21

However, when a considerable time passes (𝐷 is at least a few thousand

timesteps), there are many more terms in 𝐴𝐴𝑅𝐸𝑡 calculation to take the average of. This

is the reason why when an anomaly occurs at timestep 𝑎2, the 𝐴𝐴𝑅𝐸𝑦 curve starts to rise

only slowly, as averages increase slower with more terms (the influence of one new high

term is proportionally less). As the beginning timestep for the average is always 𝑦 = 𝑏,

the slope gets less and less steep as 𝑦 increases. That is why the anomaly at 𝑎2 is only

detected at 𝑑2.

In the extreme case, as the algorithm is planned to run real-time uninterrupted,

anomalies start to get unnoticed after a certain timestep as the 𝐴𝐴𝑅𝐸𝑦 curve never reaches

the 𝑡ℎ𝑑𝑦 curve, it normalises before normal data points arrive again. This is a major

drawback when ReRe is planned to run persistently.

There is another issue with continuous real-time use. In the current

implementation of ReRe, all original data points (𝑣𝑦), all predicted data points (𝑣�̂�), all

AARE error values (𝐴𝐴𝑅𝐸𝑦), all threshold values (𝑡ℎ𝑑𝑦), moreover all detected

anomalies and pattern changes have to be stored from the moment they are generated for

as long as ReRe is running. This means that in order for ReRe to run for 𝑇 total timesteps,

6𝑇 data points have to be stored locally. Consequently, there is no upper bound on the

memory requirements of the algorithm, and if it runs out of space, ReRe is going to stop

with an error. Admittedly, this would still involve a presumably long operation time, as

modern computers have terabytes of storage, and a timestep usually takes up around a

few hundred bytes, but this approach is far from being optimal.

 22

5 Alter-Re2

We introduce two extensions, such as ageing and window-mode, to the ReRe

algorithm (refer to Section 4.2) in this section to address important limitations in the

design of ReRe. Then, we present our implementation for tuning both parameters of the

proposed upgrades (i.e., age power and window-mode).

5.1 Ageing

To address the issue described in Section 4.3, we decided to implement the ageing

of the terms in 𝐴𝐴𝑅𝐸𝑦 calculation. This involves devising a method to place greater

emphasis on a few previous data points instead of averaging them with the same weight.

So as time elapses, the weight of a given data point decreases.

This means that an extra ageing coefficient 𝐶𝑦 is introduced to Eq. (1), which

results in the following modified formula:

𝐴𝐴𝑅𝐸𝑡, 𝑎𝑔𝑖𝑛𝑔 =
1

𝑡 − 𝑏 + 1 ⋅ ∑ 𝐶𝑦 ⋅
|𝑣𝑦 − 𝑣�̂�|

𝑣𝑦

𝑡

𝑦=𝑏

 (5)

This coefficient 𝐶𝑦 is calculated using the following equation:

𝐶𝑦 = (
𝑦 − 𝑊
𝑡 − 𝑊

)
𝐴𝑃

 (6)

Variables used (beyond the ones introduced in Section 4.1.2):

• y: timestep running variable in the sum

• 𝑊: beginning timestep of the Window

• 𝐴𝑃: Age Power

• 𝐶𝑦: ageing coefficient

The visual aid for understanding the concept of ageing can be seen in Figure 5-1.

The figure incorporates the design of a sliding window as well, introduced in Section 5.2.

To see the improvements of ageing only, settings 𝑊 = 0 and WINDOW_SIZE = 𝑡

should be used. As it is apparent from Figure 5-1 and Eq. (6), the age power variable 𝐴𝑃

determines the aggressiveness of ageing, i.e., how strongly the algorithm should consider

the previous few data points. If 𝐴𝑃 = 1, there is a linear ageing. Negative numbers are

not recommended, as they result in inverse ageing. Thus, 𝐴𝑃 becomes an additional

hyperparameter of the algorithm.

 23

Figure 5-1: The operational principle of ageing.

Equation (6) always produces a number between 0 and 1 for 𝐶𝑦 if 𝑦 ∈ [𝑊, 𝑡]. This

way, the last few data points will remain approximately the same, while the ones closer

to the start will be scaled down.

The issue of slow or no reaction to anomalies after a considerable time, discussed

in Section 4.3, can be addressed with the ageing of the terms in the sum, as new high error

terms influence 𝐴𝐴𝑅𝐸𝑦 values much more than older smaller ones. We assess further this

improvement in Section 6.3.

5.2 Window-mode

The other limitation of ReRe discussed at the end of Section 4.3 is the need to

store all data from the point in time they were generated. We can mitigate this issue by

storing only the previous value of the average error terms, and the number of data points

it was calculated from. This recursive method formalized below:

𝐴𝐴𝑅𝐸𝑡 =
1

𝑡 − 𝑏 + 1 ⋅ (𝐴𝐴𝑅𝐸𝑡−1 ⋅ (𝑡 − 𝑏) +
|𝑣𝑡 − 𝑣�̂�|

𝑣𝑡
) (7)

However, in order to calculate the threshold value 𝑡ℎ𝑑𝑡, we need to know the

standard deviation of the 𝐴𝐴𝑅𝐸𝑦 values. Unfortunately, this 𝜎𝐴𝐴𝑅𝐸𝑡 value cannot be

expressed only using values from the previous timestep 𝑡 − 1 and the number of timesteps

due to the changing 𝜇𝐴𝐴𝑅𝐸𝑦 values in every timestep. Therefore every 𝐴𝐴𝑅𝐸𝑦 value has

to be stored from the start.

 y

 24

To address the need for this ‘unlimited’ storage, and to entirely eliminate the

necessity to take into account very old data points, we implemented a sliding window in

the algorithm (see Figure 5-1 for a visual representation). The sliding window has one

parameter, the WINDOW_SIZE or 𝑊𝑆. The window beginning timestep 𝑊 is calculated

in Eq. (8). Data points before the beginning of the window are discarded, and the

equations for ReRe are modified as follows in Eq. (9) – (12) . These equations also include

the implementation of ageing. If ageing is disabled, all values of 𝐶𝑦 are set to 1. If

window-mode is disabled, the window size parameter 𝑊𝑆 is set to the current timestep 𝑡.

This way, Eq. (8) always chooses the timestep 𝑏 as the beginning of the window because

that is when the first value of 𝐴𝐴𝑅𝐸𝑦 is produced.

{𝑊 = 𝑡 − 𝑊𝑆 + 1 𝑖𝑓 𝑡 − 𝑊𝑆 + 1 > 𝑏
𝑊 = 𝑏 𝑖𝑓 𝑡 − 𝑊𝑆 + 1 ≤ 𝑏 (8)

𝐴𝐴𝑅𝐸𝑡 =
1

𝑡 − 𝑏 + 1 ⋅ ∑ 𝐶𝑦 ⋅
|𝑣𝑦 − 𝑣�̂�|

𝑣𝑦

𝑡

𝑦=𝑊

 (9)

𝑡ℎ𝑑𝑡 = 𝜇𝐴𝐴𝑅𝐸𝑡 + 3 ⋅ 𝜎𝐴𝐴𝑅𝐸𝑡 (10)

𝜇𝐴𝐴𝑅𝐸𝑡 =
1

𝑡 − 𝑏 + 1 ⋅ ∑ 𝐴𝐴𝑅𝐸𝑦

𝑡

𝑦=𝑊

 (11)

𝜎𝐴𝐴𝑅𝐸𝑡 = √∑ (𝐴𝐴𝑅𝐸𝑦 − 𝜇𝐴𝐴𝑅𝐸𝑡)2𝑡
𝑦=𝑊

𝑡 − 𝑏 + 1 (12)

As shown in Figure 5-1, the introduction of ageing (see Section 5.1) has been

adapted for the sliding window. Eq. (6) produces values of 0 at the beginning of the

window (timestep 𝑊) and produces values of 1 at the current timestep 𝑡.

The implemented sliding window has an extra benefit. 𝑡ℎ𝑑𝑦 values are calculated

using 𝐴𝐴𝑅𝐸𝑦 values only from within the window. Therefore, the detection threshold

adjusts faster and more precisely, and high 𝐴𝐴𝑅𝐸𝑦 values from a few thousand timesteps

before do not distort the performance until the very end of operation.

 25

5.3 Automated hyperparameter tuning

In this section, we first discuss the effects of the WINDOW_SIZE and

AGE_POWER parameters on detection. Then, we introduce our proposed algorithm for

automated adjustment of these two parameters. We show that this automation can help

optimizing the values of the window size and age power, which normally would need to

be set manually.

5.3.1 Devising a metric for the size of data points used

Both the WINDOW_SIZE and AGE_POWER parameters have an indirect

relation to the accuracy of anomaly detection. Precisely, they impact the volume of data

points and their weights that serve as inputs when Alter-Re2 calculates the 𝐴𝐴𝑅𝐸𝑦 and

𝑡ℎ𝑑𝑦 values. This relationship is qualitatively showed in Figure 5-1.

From the figure, we find that an increase of 𝐴𝑃 results in fewer (and newer) data

points being taken into consideration. Decreasing it, on the other hand, has the opposite

effect, enabling older data points within the window as well to have an impact on the

calculated 𝐴𝐴𝑅𝐸𝑦 value.

The opposite is true for 𝑊𝑆. As we increase the size of the window, the number

of data points used for calculation also increases, and reducing the size also reduces the

number of values taken into consideration.

The above discussed qualitative analysis, however, does not allow for precise

tuning of these parameters; their effect has to be evaluated numerically. To achieve this,

we propose a metric that relates to the number of data points and the weights introduced

by ageing. Namely, the area under the 𝐶𝑦 curve, 𝐴(𝐴𝑃, 𝑊𝑆), as shown in Figure 5-2.

This area changes exactly as expected based on the discussion above. Increasing

𝐴𝑃 reduces it while decreasing 𝐴𝑃 increases its value. On the other hand, expanding the

window size results in a larger area, whereas a smaller window yields a smaller area.

Therefore, we consider it a useful metric for the size of data taken into consideration.

However, its calculation has to utilize only a small portion of the available resources to

justify its usefulness. An area under a curve from a certain timestep to another can be

calculated using definite integrals. This derivation is present in Equation (13).

 26

Figure 5-2: The area under the Cy curve.

𝐴(𝐴𝑃, 𝑊𝑆) = ∫ 𝐶𝑦(𝑦) ⋅ 𝑑𝑦
𝑡

𝑊

= ∫ (
𝑦 − 𝑊
𝑡 − 𝑊

)
𝐴𝑃

⋅ 𝑑𝑦
𝑡

𝑊

= ⋯ =

= [
(𝑦 − 𝑊)𝐴𝑃+1

(𝑡 − 𝑊)𝐴𝑃 ⋅ (𝐴𝑃 + 1)]
𝑊

𝑡

=
𝑡 − 𝑊
𝐴𝑃 + 1

(13)

Substituting 𝑊 = 𝑡 − 𝑊𝑆 + 1 after enough timesteps, as shown by Equation (8)

results in Equation (14).

𝑨(𝑨𝑷, 𝑾𝑺) =
𝑡 − (𝑡 − 𝑊𝑆 + 1)

𝐴𝑃 + 1 =
𝑾𝑺 − 𝟏
𝑨𝑷 + 𝟏 (14)

This relationship (derived above in Equation (14)) between the area under the 𝐶𝑦

curve and the 𝑊𝑆 and 𝐴𝑃 parameters meets all the criteria defined above. It is lightweight

in terms of computation complexity, contains only the two important parameters, and

behaves exactly like the qualitative analysis predicted.

If the goal is to preserve this area (𝐴(𝐴𝑃, 𝑊𝑆)) while changing both 𝑊𝑆 and 𝐴𝑃,

we can use the following formula (displayed in Equation (15)).

𝑊𝑆𝑦 − 1
𝐴𝑃𝑦 + 1 ≔

𝑊𝑆𝑦+1 − 1
𝐴𝑃𝑦+1 + 1 (15)

 27

We can rearrange Equation (15) to express 𝐴𝑃𝑦+1 using the other variables. This

can be useful if our aim is to adjust 𝐴𝑃 exactly so that the new area using 𝑊𝑆𝑦+1 is the

same as the old one. This rule for 𝐴𝑃 setting is displayed in Equation (16).

𝐴𝑃𝑦+1 =
(𝑊𝑆𝑦+1 − 1) ⋅ (𝐴𝑃𝑦 − 1)

𝑊𝑆𝑦 − 1
 (16)

5.3.2 Automated tuning algorithm steps

Utilizing the metric described in Section 5.3.1 and the findings on signs of extreme

parameter values described in Section 5.3.3, we devise an algorithm that is capable of

automatically adjusting the 𝑊𝑆 and 𝐴𝑃 parameters. The algorithm consists of four steps.

Step 1 – default values

if t == 0

In this step, Alter-Re2 sets the default values for the parameters. The window size

is determined based on the 𝐵 parameter (see Section 4.1), as shown in Equation (17).

Since the 𝐵 parameter determines how many data points the LSTM model uses for

training and prediction, it is well suited to be the basis for the window size, also a

parameter that determines the number of data points to be used, but for another purpose.

𝑊𝑆𝑑𝑒𝑓 = 5 ⋅ 𝐵 (17)

We consider this a small window based on our experiments, but since it can be

both increased and decreased during various steps of the algorithm, this bears little

significance. The default value for the AGE_POWER parameter results in linear ageing

at the beginning, as shown in Equation (18). This can also be considered a smaller value.

𝐴𝑃𝑑𝑒𝑓 = 1 (18)

These default values determine a fixed area metric, which can be calculated as

shown in Equation (19).

𝐴𝑑𝑒𝑓 =
𝑊𝑆𝑑𝑒𝑓 − 1
𝐴𝑃𝑑𝑒𝑓 + 1 =

5𝐵 − 1
2 = 2,5𝐵 − 0,5 ≈ 2,5𝐵 (19)

 28

Step 2 – initial increase

if t == 2B – 1 + 2B*i

The second step is the initial increase of both 𝑊𝑆 and 𝐴𝑃. At this stage, the

WINDOW_SIZE and the AGE_POWER parameters are most likely too small for the

dataset given the default values (see Step 1 – default values above). Additionally, these

original values determine an area metric calculated in Equation (19) that corresponds to

only a few data points taken into consideration. As the optimal area metric depends on

the actual dataset, the most straightforward approach seems to be starting from a small

one initially and increasing it until satisfactory. Therefore, Alter-Re2 only checks if the

window size is too small, using the so-called WS_MIN criterion (see Section 5.3.3). If it

is true (i.e., the window needs to be larger), both the 𝑊𝑆 and 𝐴𝑃 parameters are increased

as shown in Equation (20) and Equation (21). ([𝑥] means 𝑥 rounded to the nearest

integer).

𝑊𝑆𝑦+1 = [2 ⋅ 𝑊𝑆𝑦] (20)

𝐴𝑃𝑦+1 = 1,5 ⋅ 𝐴𝑃𝑦 (21)

These formulas have three distinct effects. Trivially, both 𝑊𝑆 and 𝐴𝑃 are

increased, getting them closer to their optimal values. The third effect is on the area

metric. The coefficients in the formulas are chosen so that the area under the 𝐶𝑦(𝑦) curve

also increases, allowing more data points at once to have an impact on detection.

The number 𝑖 stores how many times this step was performed, starting from 0. As

long as WS_MIN is true, 𝑖 is incremented by one, and this step is performed again. When

WS_MIN returns false, a Boolean storing whether this initial step is over is set to true,

and 𝑖 is fixed. After this, Alter-Re2 never returns to this step, alternating instead between

steps 3 and 4 until the algorithm is stopped.

Step 3 – adjusting the window

if t == 2B – 1 + 2B*i + B^2*j

After the initial increase of the parameters, this step is performed at every 𝐵2

timesteps, as seen in the code above. Alter-Re2 performs three checks at the beginning.

First, it determines if a parameter adjustment has occurred in the last 𝐵 timesteps. If it

has, execution of the step stops. If not, the algorithm performs two additional checks,

 29

namely WS_MIN and WS_MAX (see Section 5.3.3) to determine whether the

WINDOW_SIZE needs to be adjusted.

If the two criteria return different logical values (i.e., true and false or false and

true), Alter-Re2 proceeds to perform the adjustment. If the WS_MIN condition is

signalled, 𝑊𝑆 and 𝐴𝑃 are increased. The WINDOW_SIZE is determined by taking the

average of the last appropriate higher 𝑊𝑆 and the current one. If there is none, it is

doubled. Similarly, in the other case (when WS_MAX is signalled), 𝑊𝑆 is reduced by

taking the average of the last appropriate lower 𝑊𝑆 and the current one. Also like in the

previous case, if there is no lower value applicable, it is halved. The AGE_POWER in

both cases is modified using Equation (16), to maintain the area metric. This is done so

that only the window is adjusted, and not the number of data points taken into

consideration (see Step 4 – adjusting ageing).

If the two criteria return the same logical value (i.e., true, true or false, false), that

means that the size of the window is set and no additional changes are performed in this

step. The running index 𝑗 stores the number of times this step was initiated, starting

from 0. Every time the initial checks are performed, besides j, the 𝑘 parameter (see Step

4 – adjusting ageing) is also incremented by one.

Step 4 – adjusting ageing

if t == 2B – 1 + 2B*i + B^2 + floor(B^2/4)*k

When Alter-Re2 reaches this step, it begins similarly as Step 3 – adjusting the

window starts; it checks three conditions. The first one is the same: whether there has

been an adjustment in the last 𝐵 timesteps. If yes, execution of this step stops. If not, the

two additional criteria, namely AP_MIN and AP_MAX are evaluated. Also, similarly, if

they both return the same Boolean value, the 𝐴𝑃 parameter is set, no additional

adjustments are performed. Otherwise, Alter-re2 adjusts the AGE_POWER (and only that

variable) as the criteria suggest. If AP_MIN is true, 𝐴𝑃 is increased by 25%, and if

AP_MAX is true, it is decreased by 25%.

This step follows Step 3 – adjusting the window initially, and then is performed

four times more frequently. This is done to enable fine tuning of detection by only

adjusting 𝐴𝑃. The variable 𝑘 is an integer that shows how many times this step was

started. It starts with 0, and is incremented by one every time the initial checks are

performed.

 30

5.3.3 Detection of extreme parameter values

To facilitate the detections listed below, a new database is established during

operation. It only stores the following three pieces of information: timestep, anomaly

detected (True or False), pattern change detected (True or False). The length of this

database is not determined by the WINDOW_SIZE parameter, thus allowing independent

operation. Its size is computed instead using Equation (22).

𝐿𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒 = 𝐵2 (22)

We also refer to this parameter (𝐿𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒) by the size of the signal window. The

following subsections list the criteria for determining whether a certain parameter (𝑊𝑆

or 𝐴𝑃) is at an extreme value (too small or large).

Too large window

WS_MAX = long_anomalies

Detecting a too large 𝑊𝑆 parameter can be achieved through measuring the

number of continuous timesteps an anomaly is signalled for. Due to the reasons discussed

in Section 4.3, when there are too many data points taken into consideration, the slope of

the 𝐴𝐴𝑅𝐸𝑦 curve gets small. That means, that Alter-Re2 adjusts to new data patterns

slowly in this case, resulting in anomalies signalled for a significantly longer time then

usually (based on our experience, the assessed anomalies never lasted more than just a

few timesteps). Thus, the detector’s only job is to count the number of timesteps an

anomaly is signalled for. If it gets larger than 2 ⋅ 𝐵, a long anomaly is reported.

Too small window

WS_MIN = anomaly_flapping or frequent_signals

If a window is too small, Alter-Re2 does not have enough information to reliably

determine long-term patterns and thresholds, and detection becomes unstable. This results

in two different noticeable phenomena. The first one is anomaly flapping, i.e., anomaly

signalling turning on and off rapidly. This condition is true when an anomaly is signalled

for 𝑛 timesteps, then no detection is made for no longer then 1,5 ⋅ 𝑛 timesteps, then

another anomaly is signalled. This behaviour is the result of the 𝐴𝐴𝑅𝐸𝑦 and 𝑡ℎ𝑑𝑦 curves

crossing frequently due to instability introduced by the small window.

 31

The other criterion checked is frequent signalling of anomalies or pattern changes.

The reason for this is the same as discussed above. Too few data points in a window result

in unstable operation, that manifests in abnormally large number of pattern changes and

anomaly signals. This, however, can only be determined based on the patterns in the

original dataset, as different time series will require different anomaly and pattern change

detections. To achieve this dataset-dependent detection of too frequent signals, a

threshold percentage is calculated based on the changes in the dataset using Equation

(23), where 𝑆𝑇 is referred to as the signal frequency threshold.

𝑆𝑇 =
10

𝑡 − 𝑊 ⋅ ∑ (𝑣𝑦+1 − 𝑣𝑦)2
𝑡−1

𝑦=𝑊

 (23)

This metric is useful as a threshold for the frequency of signals, as when there are

many high-amplitude changes, more anomaly and pattern change signals are expected,

and 𝑆𝑇 also evaluates to a higher value. After calculating 𝑆𝑇, Alter-Re2 counts the actual

number of signals in the database discussed in Section 5.3.3. Signals (i.e., anomaly or

pattern change detections) count as one even if they are present for multiple timesteps.

This is achieved by counting only the starts (false to true transitions) of the signals. When

the enumeration is over, the algorithm divides the number of signals by the length of the

database (𝐿𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒 = 𝐵2) to get the current signal ratio. It then compares the signal

threshold (𝑆𝑇) to this current signal ratio. If the current ratio is higher than 𝑆𝑇, the number

of signals is considered abnormal, and the frequent signals condition is set to true,

otherwise it is set to false.

Too high age power

AP_MAX = WS_MIN = anomaly_flapping or frequent_signals

As discussed in Section 5.3.1, when 𝐴𝑃 and 𝑊𝑆 are changed in opposite

directions have similar effects. So much so, that their extreme values can be detected

using the same set of criteria. The too large AGE_POWER (if nothing else changed)

results in fewer data points taken into consideration, thus producing anomaly flapping

and too frequent signals. Therefore, AP_MAX returns the same logical value as WS_MIN

(see the section entitled ‘Too small window’).

 32

Too small age power

AP_MIN = WS_MAX or AP < 1 = long_anomalies or AP < 1

Similarly, when the AGE_POWER is too small, many older data points will have

an effect on the algorithm, reducing the slope of the 𝐴𝐴𝑅𝐸𝑦 curve, and thus the speed of

anomaly detection. This can be observed by searching for too long anomalies.

An additional condition is introduced to AP_MIN compared to WS_MAX (see

the section entitled ‘Too large window’), 𝐴𝑃 < 1. This is done in order to prevent 𝐴𝑃

values falling to extreme low values even if the WINDOW_SIZE needs to be reduced

(see Step 3 – adjusting the window).

 33

6 Experiments

In this section, we present our experiments comparing different settings of ReRe

and Alter-Re2, and present the experimental parameters and setup used. This is then

followed by the evaluation of the automated 𝑊𝑆 and 𝐴𝑃 parameter tuning algorithm

integrated in Alter-Re2.

6.1 Preliminaries

The source of the datasets presented in this study is the Numenta Anomaly

Benchmark (NAB) [17], using their publicly accessible GitHub repository [18]. NAB has

a wide variety of different types of datasets related to computer networks and data

traversing them or originating from them. It has flags for real anomalies to help evaluate

real-time anomaly detection algorithms.

To set ReRe parameters, we started with values recommended and used in the

original paper [2]. This means having one hidden LSTM layer and setting the number of

neurons to 10 within it. This proved to be insufficient, as the neural network model was

making unreasonable predictions due to not being able to learn data patterns with enough

complexity at the beginning. Unfortunately, we could not compare our implementation to

the authors’ one, as there is to this day no publicly available code of either RePAD or

ReRe. Therefore, it is entirely possible that a slightly different way of deploying the

LSTM model and implementing training and prediction functions might result in different

operation. Nonetheless, we concluded that a setting of 30 neurons in the one hidden layer

with 30 epochs produced the best results. On the one hand, increasing these numbers

further dramatically increases training time, on the other hand, decreasing them degrades

prediction performance.

We conducted similar experiments to determine the value of 𝑏, the look-back

parameter. The authors of ReRe used a very low 𝑏 = 3, that for us did not produce

satisfying results. After experimenting with the effect of all parameters on the overall

performance, we concluded a setting of 𝑏 = 30. Surprisingly, a higher or lower number

sometimes introduced a constant offset between the original and predicted data points.

As mentioned in Section 4.1.2, the predict-forward parameter is set to 𝑓 = 1

constantly (ReRe predicts only the very next datapoint 𝑣𝑡+1̂).

 34

With regard to the WINDOW_SIZE (𝑊𝑆) parameter, we found that a too small

value results in an unstable operation, as there are not enough data points to learn long-

term dependencies. The upper bound on 𝑊𝑆 is the storage space designated for the

algorithm. Additionally, CPU and time constraints might also have to be considered, as

computational difficulty and time increases with the larger number of available data

points. For these reasons, we concluded based on experiments that 𝑊𝑆 has to be set to at

least 500 timesteps. In the following experiments, we use the setting of 𝑊𝑆 = 1000.

Finally, we found that the AGE_POWER (𝐴𝑃) parameter should be set to

approximately 2, resulting in a quadratic ageing equation. If 𝐴𝑃 is significantly lower,

old data points have a strong influence on the current 𝐴𝐴𝑅𝐸𝑡 value, which is undesirable.

On the contrary, if 𝐴𝑃 is much higher than 2, only the very few last data points have any

effect on the algorithm’s performance, which results in unstable operation. In the

following experiments, we use the setting of 𝐴𝑃 = 2.

As we were working with offline datasets, we did not have to implement real-time

normalization of data points (more discussion on this aspect can be found in Section 8).

Since LSTM models require the training and prediction data to fall between 0 and 1 for

appropriate operation, we simply divided the whole dataset by the value of the largest

data point.

All figures presented in the following three experiment sections (Section 6.2,

Section 6.3 and Section 6.4) have the same layout. They consist of three graphs that show

the details of ReRe in operation. The top graph shows the original data points (𝑣𝑦) in

green, and the LSTM-predicted data points (𝑣�̂�) in red. Recall, that the original and

predicted values have been scaled down to the [0, 1] interval for the LSTM model to

work. In the middle graph, we draw the curves of the absolute average relative error

(𝐴𝐴𝑅𝐸𝑦) in blue and the threshold (𝑡ℎ𝑑𝑦) in yellow. The bottom figure displays

detections made by ReRe. Anomaly detections are drawn in purple, while pattern changes

have a turquoise colour. As a reminder, when the 𝐴𝐴𝑅𝐸𝑦 value gets higher than the 𝑡ℎ𝑑𝑦

value, ReRe determines whether there is a pattern change or an anomaly (always one of

these, but never both). For more information on ReRe operation, refer to Section 4.

The settings of WINDOW_SIZE (𝑊𝑆) and AGE_POWER (𝐴𝑃) are shown in the

captions underneath the figures, alongside with the dataset name and flagged anomalies

(anomalies confirmed by the collector of the dataset).

 35

6.2 Reference Measurement

The aim of this experiment is to prove that the original ReRe algorithm is capable

of detecting anomalies. The dataset used here shows CPU utilization percentages from an

Amazon Web Services (AWS) server. The results are depicted in Figure 6-1.

Figure 6-1: ReRe output for ec2_cpu_utilization_825cc2.csv (no ageing, no window).

Flagged anomalies at timesteps 1627, 1769.

The second anomaly at timestep 1769 is detected by ReRe as the bottom graph

displays. The middle graph shows that ReRe needs a few timesteps for the 𝐴𝐴𝑅𝐸 curve

to rise enough to cross the 𝑡ℎ𝑑 curve and begin the detection process. After the original

data rises again at around timestep 1900, ReRe detects a second pattern change and

retrains the LSTM model with the new data to adjust to the new pattern.

However, the first anomaly at timestep 1627 is not detected, since it is only a few

timesteps long, and the 𝐴𝐴𝑅𝐸 curve does not have the time to rise enough to cross 𝑡ℎ𝑑

values. This is due to the arrival of new normal data points that mitigate the increase of

 36

𝐴𝐴𝑅𝐸 values. Nonetheless, ReRe is able to perform anomaly detection when the anomaly

persists for a few timesteps, thus confirming the claims of its developers.

6.3 ReRe vs. Alter-Re2

In this experiment, our goal is to show the benefits of Alter-Re2 compared to the

original design of ReRe in two experiments. Both datasets used here show CPU utilization

percentages collected from AWS servers using the CloudWatch monitoring tool.

Figure 6-2: ReRe output for ec2_cpu_utilization_ac20cd.csv (no ageing, no window).

Flagged anomalies at timesteps 421, 3576.

Figure 6-2 and Figure 6-3 depict the different detection results of ReRe and Alter-

Re2, respectively. The first flagged anomaly is detected by both algorithms for similar

reasons, as discussed in the previous experiment (see Section 6.2).

 37

Figure 6-3: Alter-Re2 output for ec2_cpu_utilization_ac20cd.csv (AP: 2, WS: 1000).

Flagged anomalies at timesteps 421, 3576.

However, the middle graph in Figure 6-2 indicates the shortcomings of ReRe.

After the detection of the first anomaly, 𝑡ℎ𝑑 values rise significantly as they are calculated

using the average and standard deviation of 𝐴𝐴𝑅𝐸 values. Additionally, as the second

anomaly comes at timestep 3576, a lot of data points have been collected, and the issue

(the slope of the 𝐴𝐴𝑅𝐸 curve is much lower) arises. These two issues combine in such a

way that the anomaly goes entirely undetected.

Alter-Re2, on the other hand, solves both issues and detects the second anomaly

as well, shown in Figure 6-3. The 𝑡ℎ𝑑 curve resets between timesteps 1500 and 2500 due

to the use of sliding window, allowing much more precise detection. The slope of the

𝐴𝐴𝑅𝐸 curve increases dramatically (although admittedly it is hard to spot in the figure),

thanks to the implemented ageing.

 38

The superiority of Alter-Re2 over ReRe can be examined further by contrasting

Figure 6-4 and Figure 6-5. Here, both anomalies last only for a few timesteps (the two

spikes with the highest amplitude).

Figure 6-4 shows the operation of the original ReRe algorithm. As anomalies are

only detectable for a few timesteps, AARE values barely reflect the anomalous behaviour.

For this reason, ReRe does not detect either of them.

There is another issue visible in Figure 6-4. Namely, there is an almost constant

offset between the averages of the predicted values and the original ones. This offset is

present in most of the other experiments’ figures as well, at least in part, though perhaps

it is most visible here. This offset is due to the slightly abnormal training data the LSTM

model learned from the data patterns. We discuss how to mitigate this issue in Section 8.

Figure 6-4: ReRe output for ec2_cpu_utilization_5f5533.csv (no ageing, no window).

Flagged anomalies at timesteps 1272, 2931.

 39

Figure 6-5: Alter-Re2 output for ec2_cpu_utilization_5f5533.csv (AP: 2, WS: 1000).

Flagged anomalies at timesteps 1272, 2931.

In contrast with Figure 6-4, Figure 6-5 depicts that Alter-Re2 successfully detected

both anomalies. This is partly because of the adjustment of the 𝑡ℎ𝑑 curve to the 𝐴𝐴𝑅𝐸 at

around timestep 1040. The 𝑡ℎ𝑑 curve does this as the sliding window (of size 1000) leaves

behind the usually high error timesteps at the beginning that are a result of the training

phase of ReRe. The original algorithm never gets rid of these terms, and always takes

them into account with the same weight as the newest timestep. Alter-Re2, on the contrary,

throws these terms away after a 𝑊𝑆 number of timesteps.

Ageing is another important upgrade to ReRe. It allows even the shortest length

anomalies (only present for a few timesteps) to be detected, as it places greater emphasis

on newly arrived data than older points. This way, the 𝐴𝐴𝑅𝐸 curve rises swiftly enough

to cross the 𝑡ℎ𝑑 curve and initiate the detection process. We argue that Alter-Re2, our

approach to address the limitations present in ReRe, is able to significantly increase the

detection precision of the original algorithm.

 40

Apart from the ones shown in this section, we performed numerous further

experiments to compare the performance of ReRe and Alter-Re2, using a wide variety of

datasets. Ten datasets were from the type of data shown in this section (for more

discussion on data types, see Section 7). These record various sources of information

including CPU utilization, request latency, request count, and other network-related

measurements. We downloaded all datasets from the NAB GitHub repository [18].

In these ten, similar type of datasets, Alter-Re2 found 10 anomalies in total (this

is the number of true positives), while ReRe managed to detect only 3. This three-fold

increase in the number of true positives indicates that Alter-Re2, implementing even only

relatively simple extensions, can substantially overperform ReRe, at least in case of

certain dataset types. With regard to false positives (the number of signalled anomalies

that are not flagged to be true), Ater-Re2 detected only 4 anomalies (these came from only

two datasets), while ReRe found only 1. We believe that these results prove the relevance

of our improvements.

 41

6.4 Performance Maintenance through Different Data Types

The goal of this experiment is to shed light on the operation of Alter-Re2 on

different kinds of datasets. So far, all previous experiments were performed on one certain

type of data that ReRe was likely designed to perform well on. Here, we present two

fundamentally different datasets and evaluate Alter-Re2 on them. For a detailed

discussion on the results presented in this section, please refer to Section 7.

The first dataset, depicted in Figure 6-6, shows machine temperature data. There

are four anomalies according to the source of the data, the Numenta Anomaly Benchmark.

These are extreme rises or drops in the temperature measured by the sensor. Alter-Re2,

however, is unable to detect either one of the four.

Figure 6-6: Alter-Re2 output for machine_temperature_system_failure.csv

(AP: 2, WS: 1000). Flagged anomalies at timesteps 2410, 3987, 16341, 19516.

The reason is, on one hand, that these anomalies do not have such a steep slope as

in the previous datasets, so our algorithm simply declares a pattern change, the previous

 42

few data points will not be that significantly different from the currently processed one.

On the other hand, the previously mentioned constant offset is present here as well, which

negatively impacts detection, as errors do not differ that much from normal behaviour. It

starts at the first pattern change detection and lasts until the next one. The reason is the

abnormal data points right before the first pattern change, since our algorithm retrains the

LSTM model with those, and thus learns slightly wrong patterns (see Section 8).

The second dataset (shown in Figure 6-7) also shows CPU utilization data from

an AWS server. The only difference from the dataset used in Section 6.3 is that correct

behaviour here is a periodic spike in the data with the same amplitude. Therefore,

abnormal data here means out-of-period or different amplitude spikes. Our algorithm is

unable to detect these anomalies, as even if it signalled the individual spikes (as it

sometimes did on similar datasets), these would not be correctly identified anomalies.

Figure 6-7: Alter-Re2 output for ec2_cpu_utilization_24ae8d.csv (AP: 2, WS: 1000).

Flagged anomalies at timesteps 3548, 3778.

 43

6.5 Evaluation of automated hyperparameter tuning

In this section, we present our observations on Alter-Re2 with automated

parameter tuning turned on. We evaluate the efficacy hyperparameter tuning using two

datasets. Specifically, we show the adjustment steps and criteria described in Section 5.3,

Figures Figure 6-8 and Figure 6-9 have a slightly different layout to those in Section 6.1

to 6.4. Although the top diagram still shows the original and predicted values, anomaly

and pattern change signals have been moved up directly below that. The third diagram

records WINDOW_SIZE and AGE_POWER values, as these parameters are modified by

the algorithm. Lastly, at the bottom, we show the results of evaluating the three detection

criteria (see Section 5.3.3). The source of the datasets is NAB [18] as previously, and

Alter-Re2 parameters are set to the same values of 𝐵 = 30, 30 neurons, 30 hidden units.

Figure 6-8: Alter-Re2 output for rds_cpu_utilization_e47b3b.csv (AP: auto, WS: auto).

Flagged anomalies at timesteps 947, 2586.

 44

The first experiment, displayed in Figure 6-8, clearly demonstrates the operational

principles discussed in Section 5.3. Alter-Re2 starts with the default values of 𝑊𝑆 = 150

and 𝐴𝑃 = 1. The initial check whether to increase the window returns false, as there have

been no anomalies signalled up to that point. At around timestep 600, Alter-Re2 reports

a false anomaly, then, at 947, it signals a one. At about 1000 timesteps, the algorithm

checks the conditions, and finds no errors, as the two anomaly signals are not frequent

enough compared to the average change in the data. After the second check, however,

frequent signalling is noticed, and the AGE_POWER is lowered to give way to more

datapoints (i.e., a larger area under the 𝐶𝑦 curve). The following checks also return

positive due to the introduction of another false alarm, and some pattern changes, but 𝐴𝑃

is not lowered further because of the condition 𝐴𝑃 < 1, to prevent complete disabling of

ageing. Before 2000, the window size is tested again, and Alter-Re2 can then resolve the

frequent signalling issue by increasing 𝑊𝑆 and 𝐴𝑃. As it persists, it decreases 𝐴𝑃

incrementally, and increases 𝑊𝑆 once again. During this, it signals another correct

anomaly at timestep 2586. After all these adjustments, the parameters are set to correct

values, as indicated by the fact that no check for extreme parameter values returns

positive. Our experiments on the appropriate values for these parameters also suggested

an 𝐴𝑃 value close to 2, and a 𝑊𝑆 value close to 1000 (in fact, these are the parameters

used in the above experiment sections). This proves that in a few thousand timesteps,

Alter-Re2 is capable of adjusting the WINDOW_SIZE and AGE_POWER parameters to

values enabling further precise detection.

The second experiment results are displayed in Figure 6-9. Just like in the previous

one, the default values are set, and the initial checks return negative, as no signal was

raised previously. When the first anomaly occurs in the dataset at timestep 421, Alter-

Re2 signals it immediately, but with a frequent state change. This behaviour is noticed by

the first check at around 1000 timesteps, that determines that both the anomaly flapping

and frequent signalling conditions are true. Consequently, Alter-Re2 increases 𝑊𝑆 and

𝐴𝑃. Since the window size is only checked and adjusted four times less frequently as 𝐴𝑃,

the next check allows the fine tuning of the AGE_POWER parameter. It is lowered by

25% due to the same conditions present at the previous check. After this timestep, the

algorithm operates normally, only signalling a few pattern changes that are not considered

too frequent by the algorithm due to the changes from timestep to timestep in the original

data (see Section 5.3.3). When the second anomaly occurs in the original dataset, Alter-

 45

Re2 signals it immediately. The last condition check shown in Figure 6-9 returns the

frequent signalling criterion to be true. This is a result of the change in the pattern of the

data at the second anomaly, as original values afterwards change much less between

timesteps. This results in a smaller signal threshold, that no longer accepts the signals

raised previously, and triggers the decrease of the 𝐴𝑃 parameter. As with the previous

one, this experiment validates the designed algorithm for automatic parameter tuning.

Figure 6-9: Alter-Re2 output for ec2_cpu_utilization_ac20cd.csv (AP: auto, WS: auto).

Flagged anomalies at timesteps 421, 3576.

In general, by analysing a few dozen more experiments, we conclude that the

automated tuning algorithm choses appropriate WINDOW_SIZE and AGE_POWER

values for the type of data patterns shown in Section 6.3 (the same applies here about data

patterns as discussed in Section 7). Although it yields a few false positive detections at

the beginning, after approximately 2000 to 4000 timesteps, the parameter values

stabilize, and major changes only occur with a change in the original data.

 46

7 Discussion

In this section, first we comment on false positives produced by RePAD and the

necessity of ReRe. Then we discuss the results of the experiments in this section. Finally,

we present our detailed discussion on the types of data ReRe and Alter-Re2 can perform

well on. We also show other data patterns that are significantly harder to optimize for

using these approaches strictly.

The purpose of ReRe, according to its authors, is to eliminate false positive

anomaly detections (when the algorithm signals an anomaly, but there is no abnormal

behaviour in reality) produced by RePAD. Yet, in our implementation, we did not

perceive an excessive number of false positives. On the contrary, our experiments showed

that RePAD failed to identify certain anomalies (false negative). As ReRe employs a

second detector that can only disable anomalies detected by detector 1 (i.e., RePAD),

ReRe cannot detect more anomalies than RePAD, only less or the same. For these reasons,

we did not find a significant benefit of using ReRe instead of RePAD.

To understand how ReRe behaves on different datasets, first, we have to create

categories of types of data. In our classification of certain patterns of data, we consider

two main properties; what kind of pattern signals normal and abnormal behaviour. On

this basis, we identified three main categories in the available datasets.

The first one has an almost constant average with data values appearing within a

band around the average. Here, anomalies occur when there is a large spike in the data or

a sudden and quick shift in the average. This is the type of data ReRe, and its improvement

operates properly on. Experiments in Sections 6.2 and 6.3 all deal with this data pattern.

The ‘look-back, predict-forward’ approach is ideal for the type even with a small look-

back parameter (𝑏), as even a small number of training and predicting data will be

sufficient for the LSTM model to infer the basic pattern from.

The second category of data types shows only activity at regular intervals. When

working normally, periodic spikes are registered in the data. This might come from a

periodic message processed or any other task that requires repetition after a preset time

interval. Bytes written on or read from disks often fall into this category with network

devices, as for most timesteps disks may be in the idle state. Anomalies here are aperiodic

spikes, a longer width of the spikes, a different amplitude, or in essence every type of

behaviour that differs from the periodic spikes with the same amplitudes. Figure 6-7 in

 47

the third experiment shows exactly this kind of data. We believe ReRe is unable to detect

these kinds of anomalies, as it is not prepared to deal with periodicity in any form. Even

if we increase the look-back parameter 𝑏, the improved ReRe produces inconsistent and

unreliable results. We conclude that this might be a consequence of the fundamental

design of the algorithm.

The third and last type of data we have analysed is more similar to the first

category (data with an almost constant average) but deviates from it in one significant

aspect. With this type, normal behaviour is not constant; rather, data points rise and fall

within acceptable limits and with an acceptable slope. When an anomaly occurs, it is most

likely due to an extremely high or low value, or a very sudden change. We found that this

type of data is mostly the output of temperature sensors, such as the first dataset in the

third experiment in Section 6.4. Our experiments with such data patterns show that ReRe

and its improvement are sometimes able to detect the most obvious and extreme

anomalies, but they almost always mistake less striking ones for pattern changes or do

not detect them at all. Measurement errors of these sensors make this task even harder, as

data can fluctuate even if the temperature is not changing. Ultimately, the ability of our

algorithm to detect these kinds of anomalies depends on the complexity of patterns the

LSTM model can learn. Yet, increasing this would mean an increase in the number of

neurons, epochs and the look-back parameter 𝑏, which are deliberately kept low to enable

real-time use.

In conclusion, we would have to make fundamental changes to ReRe to enable

the detection of these different kinds of anomalies, as it is originally best suited only for

the first category of data types. Perhaps an intelligent detector built into the system could

infer in the first few hundred timesteps which kind of data it is receiving and could then

select the algorithm suited best or tune its parameters for the type. It could then monitor

the data during the operation and choose a different algorithm or retune the parameters if

necessary. Nonetheless, we have to conclude that the accuracy of ReRe is data type-

dependent, still, with our improvements, though Alter-Re2 produces convincing results in

the domain it was designed for.

 48

8 Research Implications

In this section, we briefly elaborate on our work’s implications and some of the

directions for future research that stem from the analysis. Our ultimate goal is developing

an anomaly detection algorithm that operates in real time on multivariate data embedded

within a complex tool designed for network administrators.

As seen in most of the figures in Section 6 to a varying degree, and specifically

mentioned in connection with Figure 6-4 and Figure 6-6, sometimes there is a constant

offset between the predicted and original data values. Discussing Figure 6-6, we

mentioned that this offset is the consequence of LSTM models being trained on slightly

abnormal data that does not represent the whole dataset properly. In Figure 6-6, there are

multiple pattern changes signalled by ReRe. Recall that then and only then is the LSTM

model retrained. Looking at the figure, it is clear that if a pattern change is signalled at

the right time, the offset is eliminated thanks to the normal and representative training

data. Observing all figures of the experiments in Section 6 we can confirm this. Based on

this finding, we plan to include an offset compensation component in the detection

algorithm. It will observe the difference of the averages of the predicted and original

values (|𝑎𝑣𝑔(𝑣𝑦) − 𝑎𝑣𝑔(𝑣�̂�)|), and if it notices a too high permanent difference, it will

trigger an LSTM retrain with the last few data points.

Another indeterministic issue in our experiments was an excessive number of

pattern changes. This results in many LSTM model retrains that are resource-intensive

and time-consuming. To address this shortcoming, we plan to introduce a component that

can modify the coefficient of 𝜎𝐴𝐴𝑅𝐸𝑡 that is currently set to 3. Through this, it is possible

to modify the 𝑡ℎ𝑑 curve to have larger values, thus detecting fewer pattern changes.

We also plan to automate further hyperparameters of Alter-Re2 in a similar

approach as we did with the AGE_POWER and WINDOW_SIZE parameters. As we

introduce new extensions of the algorithm, the usefulness of this automation will increase.

Thus, we plan to enable setting as many parameters automatically as possible, based on

the properties of the dataset.

In order for this algorithm to work in real-time applications, there are a few

problems that need to be solved. As ReRe is in principle capable of online detection of

 49

streaming data3, data preparation is the key area to focus on. More specifically, ReRe

requires the input data to be scaled down and fall between 0 and 1. This has to be done

in real time without knowing the boundaries of the input data. In some scenarios, we can

make predictions on what is the possible highest and lowest input value we can observe

(e.g., a CPU utilization percentage will be between 0 and 100), but if we strive for a

general solution, this is not a viable option. All in all, we have to incorporate real-time

normalization of the input data into Alter-Re2. We also have to adapt our implementation

that currently works on offline datasets to manage the real-time receipt of input data.

Since we plan to deploy the algorithm as an anomaly detector for streaming

telemetry data, we will have to solve the issue of multivariate data. A network device can

produce a wide range of operational information. To find patterns of abnormal behaviour,

we have to analyse multiple variables in real-time. Although ReRe was designed to run

on univariate data, the LSTM model and its functions can handle extra dimensions. The

only issue arises at signalling an anomaly. In future, we plan to devise a method to decide

when to signal a collective anomaly based on the individual signals of variables. This

may require domain knowledge, and specifically tuning the system for an application.

Finally, we briefly mention the issue of evaluating anomaly detection algorithms.

The main reason for the complexity of this task comes from the very small frequency of

anomalies compared to the frequency of normal data points. Depending on the

application, there might also be different aspects that are more important than others. For

example, one use case might prioritize the speed of anomaly detection, while another

might place more emphasis on how many anomalies go unnoticed. The cost of a false

positive or a false negative might also have to be considered. There are multiple metrics

used in literature, such as precision (# 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
𝑜𝑓 𝑡𝑟𝑢𝑒 𝑎𝑛𝑑 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

), recall (# 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
𝑜𝑓 𝑎𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠

)

and many other fractions, curves and diagrams. A possible solution is to create an

aggregated metric that consists of application-specific variables and calculations.

Given that ageing and the sliding window mechanism can already introduce

improvements in anomaly detection (as demonstrated in Section 6), it is very likely that

incorporating the above discussed concepts can lead to further advances.

3 This only depends on the capabilities of the machine it is deployed on and parameter settings.

 50

9 Conclusions

Real-time anomaly detection in time-series data is an emerging area with

approaches mostly based on neural networks, and increasingly often LSTMs. We

surveyed state-of-the-art solutions and selected an LSTM-based real-time anomaly

detection algorithm called ReRe.

We evaluated the selected method and found its performance limitations.

Motivated by this fact, we developed Alter-Re2, an anomaly detection algorithm that

seems to overperform ReRe. It provides a sliding window to limit memory and CPU stress

below an upper bound. Furthermore, Alter-Re2 implements also a mechanism for ageing

of the data points, used for calculating error terms, to solve the issue of slow (or no)

reaction to anomalies. We also introduced an algorithm capable of automating the tuning

of the AGE_POWER and WINDOW_SIZE hyperparameters.

We rigorously evaluated Alter-Re2 in several different scenarios. Our approach,

implementing even only relatively simple extensions, achieved significantly better

performance compared to ReRe in the investigated scenarios, detecting three times as

many anomalies. Our algorithm showed reliable performance even in cases when ReRe

fell short of detecting certain anomalies. We conclude that our automated parameter

adjustment method has met our goals and can tune the values to a high accuracy.

Furthermore, we examined also how Alter-Re2 performed on various types of data

and drew conclusions for each category we divided data types into. We found that Alter-

Re2 worked appropriately only on data with an almost constant average as normal

behaviour, nonetheless always overperforming ReRe. Other types of data require further

investigation. In conclusion, our observations support the feasibility of our approach.

In future work, we plan to evaluate the applicability and usefulness of several

other concepts. Our goals include offset compensation, adaptive threshold sigma-

coefficient setting, automated tuning of further hyperparameters, real-time normalization,

and multivariate data support.

As time-series data streams are now an integral part of almost every field of

technology, the important tool of real-time anomaly detection deserves more attention.

We are certain, that our contribution is valuable in facilitating the development of relevant

techniques, yet we argue our approach has immediate real-world applicability as well.

 51

10 Acknowledgements

With a deep sense of gratitude, I would like to thank my thesis advisors Dr. Adrián

Pekár and Dr. Károly Farkas (Department of Networked Systems and Services at

Budapest University of Technology and Economics) for assisting me at every step of the

process with their valuable guidance and continuous support.

I must also express my profound gratitude to my family for providing me with

unfailing support and continuous encouragement throughout my years of study.

 52

11 List of Figures

Figure 3-1: Simplified layout of a feedforward neural network. (original)

Figure 3-2: Structure of RNNs. [19]

Figure 3-3: Comparison of the structures of RNNs and LSTMs. [21]

Figure 4-1: The slope of AARE depends on the current timestep. (original)

Figure 5-1: The operational principle of ageing. (original)

Figure 5-2: The area under the Cy curve. (original)

Figure 6-1: ReRe output for ec2_cpu_utilization_825cc2.csv (no ageing, no window).

Flagged anomalies at timesteps 1627, 1769. (original)

Figure 6-2: ReRe output for ec2_cpu_utilization_ac20cd.csv (no ageing, no window).

Flagged anomalies at timesteps 421, 3576. (original)

Figure 6-3: Alter-Re2 output for ec2_cpu_utilization_ac20cd.csv (AP: 2, WS: 1000).

Flagged anomalies at timesteps 421, 3576. (original)

Figure 6-4: ReRe output for ec2_cpu_utilization_5f5533.csv (no ageing, no window).

Flagged anomalies at timesteps 1272, 2931. (original)

Figure 6-5: Alter-Re2 output for ec2_cpu_utilization_5f5533.csv (AP: 2, WS: 1000).

Flagged anomalies at timesteps 1272, 2931. (original)

Figure 6-6: Alter-Re2 output for machine_temperature_system_failure.csv (AP: 2, WS:

1000). Flagged anomalies at timesteps 2410, 3987, 16341, 19516. (original)

Figure 6-7: Alter-Re2 output for ec2_cpu_utilization_24ae8d.csv (AP: 2, WS: 1000).

Flagged anomalies at timesteps 3548, 3778. (original)

Figure 6-8: Alter-Re2 output for rds_cpu_utilization_e47b3b.csv (AP: auto, WS: auto).

Flagged anomalies at timesteps 947, 2586. (original)

Figure 6-9: Alter-Re2 output for ec2_cpu_utilization_ac20cd.csv (AP: auto, WS: auto).

Flagged anomalies at timesteps 421, 3576. (original)

 53

12 Acronyms

AARE Average Absolute Relative Error

ADT AnomalyDetectionTs

ADV AnomalyDetectionVec

AP Age Power parameter

AWS Amazon Web Services

BGP Border Gateway Protocol

eSNN evolving Spiking Neural Networks

HTM Hierarchical Temporal Memory

LSTM Long Short-Term Memory

NAB Numenta Anomaly Benchmark

RePAD Real-Time Proactive Anomaly Detection for Time Series

ReRe A Lightweight Real-time Ready-to-Go Anomaly Detection

Approach for Time Series

RNN Recurrent Neural Network

thd detection threshold

𝑾𝑺 Window Size parameter

𝑨𝑷 Age Power parameter

𝑺𝑻 Signal Threshold ratio

 54

13 Bibliography

[1] Ming-Chang Lee, Jia-Chun Lin, Ernst Gunnar Gran (2020): “RePAD: Real-Time
Proactive Anomaly Detection for Time Series”. In: Advanced Information
Networking and Applications. AINA 2020. Advances in Intelligent Systems and
Computing, vol 1151. (pp. 1291-1302.). Springer, Cham. ISBN: 978-3-030-
44040-4, DOI: https://doi.org/10.1007/978-3-030-44041-1_110.

[2] Ming-Chang Lee, Jia-Chun Lin, Ernst Gunnar Gran (2020): “ReRe: A Lightweight
Real-time Ready-to-Go Anomaly Detection Approach for Time Series”, preprint
for Proceedings of the 44th IEEE Computer Society Signature Conference on
Computers, Software, and Applications (COMPSAC 2020), IEEE. arXiv preprint
arXiv:2004.02319. https://arxiv.org/abs/2004.02319.

[3] Andrian Putina, Dario Rossi, Albert Bifet, Steven Barth, Drew Pletcher, Cristina
Precup, Patrice Nivaggioli (2018): “Telemetry-based stream-learning of BGP
anomalies”, In: Big-DAMA '18: Proceedings of the 2018 Workshop on Big Data
Analytics and Machine Learning for Data Communication Networks (SIGCOMM
'18), (pp. 15-20.). ISBN: 978-1-450-35904-7, DOI:
https://doi.org/10.1145/3229607.3229611.

[4] Piotr S. Maciag, Marzena Kryszkiewicz, Robert Bembenik, Jesus L. Lobo, Javier
Del Ser (2019): “Unsupervised Anomaly Detection in Stream Data with Online
Evolving Spiking Neural Networks”, preprint for 4th IEEE/IFIP International
Workshop on Analytics for Network and Service Management. arXiv preprint
arXiv:1912.08785. https://arxiv.org/abs/1912.08785.

[5] Subutai Ahmad, Alexander Lavin, Scott Purdy, Zuha Agha (2017):
“Unsupervised real-time anomaly detection for streaming data”, Elsevier:
Neurocomputing volume 262 (pp. 134-147.). ISSN: 0925-2312, DOI:
https://doi.org/10.1016/j.neucom.2017.04.070.

[6] Swee Chuan Tan, Kai Ming Ting, Tony Fei Liu (2011): “Fast Anomaly Detection
for Streaming Data”, IJCAI'11: Proceedings of the Twenty-Second international
joint conference on Artificial Intelligence - Volume Two (pp. 1511-1516.). ISBN
978-1-57735-512-0, DOI: https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-
254.

[7] Feng Cao, Martin Ester, Weining Qian, Aoying Zhou (2006): “Density-Based
Clustering over an Evolving Data Stream with Noise”, Proceedings of the Sixth
SIAM International Conference on Data Mining (pp. 328-339.). ISBN: 978-0-
89871-611-5, DOI: https://doi.org/10.1137/1.9781611972764.29.

[8] Twitter/AnomalyDetection [Online code repository], Available:
https://github.com/twitter/AnomalyDetection (accessed: 2020-10-28).

[9] Nong Ye, Douglas Montgomery, Kevin Mills, Mark Carson (2019): “Multivariate
Metrics of Normal and Anomalous Network Behaviors”, IFIP/IEEE Symposium
on Integrated Network and Service Management (IM), Arlington, VA, USA, (pp.
55-58.). ISBN: 978-1-7281-0618-2.

 55

[10] Georgios Kaiafas, Christian Hammerschmidt, Radu State, Cu D Nguyen, Thorsten
Ries, Mohamed Ourdane (2019): “An Experimental Analysis of Fraud Detection
Methods in Enterprise Telecommunication Data using Unsupervised Outlier
Ensembles”, IFIP/IEEE Symposium on Integrated Network and Service
Management (IM), Arlington, VA, USA, (pp. 37-42.). ISBN: 978-1-7281-0618-2.

[11] Aggelos Lazaris and Viktor K. Prasanna: “An LSTM Framework For Modeling
Network Traffic”, 2019 IFIP/IEEE Symposium on Integrated Network and
Service Management (IM), Arlington, VA, USA, (pp. 19-24.). ISBN: 978-1-7281-
0618-2.

[12] Tae Jun Lee, Justin Gottschlich, Nesime Tatbul, Eric Metcalf, Stan Zdonik
(2018): “Greenhouse: A Zero-Positive Machine Learning System for Time-Series
Anomaly Detection”, preprint for SysML’18, February 2018, Stanford, CA, USA.
arXiv preprint arXiv:1801.03168. https://arxiv.org/abs/1801.03168.

[13] Sepp Hochreiter and Jürgen Schmidhuber (1997): “Long Short-Term Memory”,
Neural Computation Volume 9, Issue 8 (pp. 1735-1780.). ISSN: 0899-7667, DOI:
https://doi.org/10.1162/neco.1997.9.8.1735.

[14] Kevin Gurney (1997): “An Introduction to Neural Networks”, Publisher: Taylor
& Francis, Inc., CRC press. ISBN: 1-85728-673-1.

[15] Alex Sherstinsky (2020): “Fundamentals of Recurrent Neural Network (RNN)
and Long Short-Term Memory (LSTM) network”, Physica D: Nonlinear
Phenomena Volume 404, 132306. ISSN: 0167-2789, DOI:
https://doi.org/10.1016/j.physd.2019.132306.

[16] Early stopping. “What is early stopping?”
https://deeplearning4j.konduit.ai/tuning-and-training/early-stopping
(accessed: 2020-10-28).

[17] Alexander Lavin and Subutai Ahmad (2015): “Evaluating real-time anomaly
detection algorithms – the Numenta Anomaly Benchmark”, 2015 IEEE 14th
International Conference on Machine Learning and Applications (ICMLA),
Miami, FL (pp. 38-44.). ISBN: 978-1-5090-0286-3, DOI:
https://doi.org/10.1109/ICMLA.2015.141.

[18] NAB: Numenta Anomaly Benchmark [Online code repository], Redwood City,
CA: Numenta, Inc. Available: https://github.com/numenta/NAB
(accessed: 2020-10-28).

[19] Bao, Wei & Yue, Jun & Rao, Yulei (2017): "A deep learning framework for
financial time series using stacked autoencoders and long-short term memory."
PLoS ONE. 12. DOI: https://doi.org/10.1371/journal.pone.0180944

[20] Sebastian Ruder (2016): "An overview of gradient descent optimization
algorithms.", arXiv preprint arXiv:1609.04747. https://arxiv.org/abs/1609.04747

[21] Aliaa Rassem, Mohammed El-Beltagy and Mohamed Saleh (2017): “Cross-
Country Skiing Gears Classification using Deep Learning”, arXiv preprint
arXiv:1706.08924. https://arxiv.org/abs/1706.08924

