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Kivonat 

Ahogyan egyre több és több eszköz csatlakozik számítógépes hálózatokhoz, úgy 

lesz azok infrastruktúrája egyre komplexebb. Ezen hálózati eszközök, rendszerek és 

szolgáltatások folyamatos felügyelete manapság lényegesebb, mint valaha. Ennek számos 

haszna lehet, mint például üzemzavar előrejelzése; leállások elkerülése azáltal, hogy előre 

azonosítjuk azok jeleit; rendszerek teljesítményének monitorozása; továbbá rendszerek 

biztonságának felügyelete és az esetleges támadások észlelése. 

Hagyományos módszerekkel azonban ezeket a funkciókat megbízhatóan, 

hatékonyan, valós időben megvalósítani koránt sem egyszerű feladat. Ezt segíti elő a 

hálózati telemetria paradigmája, mely egy modern eljárás a hálózati eszközökből 

kinyerhető, idősor alapú telemetria adatok gyors, hatékony és automatikus begyűjtésére. 

A begyűjtött adatokat azonban fel kell dolgozni, hogy képesek legyünk detektálni a 

helytelen működésre utaló jeleket, amit gépi tanuló algoritmusok segítségével lehet 

hatékonyan megvalósítani. Ezt a folyamatot nevezzük anomáliadetekciónak. 

Ez a dolgozat kifejezetten az anomáliadetekcióra összpontosít, új megvilágításba 

helyezve annak idősor alapú telemetria adatokon történő használatát. Az irodalomkutatás 

során az ún. Long Short-Term Memory (LSTM) alapú, ReRe elnevezésű algoritmust 

azonosítottuk, mint a jelenleg elérhető leghatékonyabb eljárás. Azonban vizsgálataink azt 

mutatták, hogy még ez az eljárás is számos limitációval rendelkezik. Ezért a dolgozatban 

bemutatjuk az algoritmus általunk továbbfejlesztett, Alter-Re2-nek elnevezett változatát, 

melyben az eredeti eljárást az ún. öregítés módszerével, illetve az adatok egy 

csúszóablakban való feldolgozásával egészítettük ki. Egy, a bevezetett módszerek 

hiperparamétereit automatikusan beállító algoritmust is kidolgoztunk. Az így elért 

teljesítményjavulás ígéretes, az Alter-Re2 algoritmus átlagosan háromszor jobban, de 

legalább úgy teljesített, mint a ReRe tíz különböző adatsoron végzett vizsgálatainkban.  

Továbbá a dolgozatban kitérünk arra, hogyan függ a ReRe és az Alter-Re2 

algoritmusok megbízhatósága és pontossága az elemzett adatsor típusától. Kategóriákba 

soroljuk a feldolgozott adatsorokat az adatok mintázatai alapján, majd elemezzük az 

algoritmus működését kategóriánként. 

Meggyőződésünk, hogy az Alter-Re2 előnyösen használható számos területen, 

ahol gyors és pontos anomáliadetekcióra van szükség, mint például a hálózati telemetria, 

IoT szenzorfolyamok, behatolók, hibák, csalások észlelése esetén. 
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Abstract 

The complexity of network infrastructure is growing in tandem with the number 

of connected devices. Infrastructure monitoring is essential as many managerial-related 

tasks highly depend on it. These include alerting partial or total system malfunction, 

outage prevention based on predictive identification of such situations, performance 

tracking, and, last but not least, security detection of system penetration. 

However, it has become far from obvious how to achieve timely, reliable, and 

sound infrastructure monitoring using traditional approaches. Telemetry has been 

developed to streamline this process. Network devices using it generate time series 

telemetry data that is streamed to a central collector. This streaming time-series data has 

to be analysed, plausibly by machine learning-based algorithms, to detect indications of 

abnormal behaviour and notify administrators. This process is called anomaly detection. 

In this study, we focus on anomaly detection on time-series telemetry data. We 

rigorously examined state-of-the-art anomaly detection methods. Specifically, we 

assessed ReRe, a Long Short-Term Memory-based (LSTM-based) algorithm. Although 

the algorithm was claimed to achieve high efficacy, our experiments revealed several 

limitations when applied on time-series data. Motivated by these findings, we propose in 

this study a modified version of ReRe, called Alter-Re2, to overcome these limitations. 

We introduce the concepts of ageing and sliding window as the key enablers of our 

extensions. Additionally, we also automated the hyperparameter tuning of our approach 

that can adjust the initial configuration of the algorithm. Consequently, the configuration 

converges to the most optimal values in just a few steps, whereas without this automation 

the values would need to be set manually. The resulted performance improvements are 

promising; compared to ReRe, our Alter-Re2 can achieve three times better, but never 

worse performance on average when evaluating using ten different datasets. 

Furthermore, we also discuss how the data type being analysed impacts the 

reliability and precision of ReRe and Alter-Re2. We were able to create categories based 

on specific data patterns and draw conclusions on ReRe for each. We hope to shed new 

light on time-series anomaly detection and stimulate further research in the field. 

Our approach is advantageous in application domains where timely and accurate 

anomaly detection is essential, such as in network telemetry, IoT sensor streams, 

intrusion, fault, and fraud detection related tasks. 
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1 Introduction 

Nowadays, infrastructure monitoring, including networks, systems, and services, 

is more critical than ever before. It is essential for several reasons, such as alerting partial 

or total system malfunction, outage prevention based on predictive identification of such 

situations, performance tracking, and, last but not least, security detection of system 

penetration. 

However, with the exponential increase in the number of interconnected devices 

and traffic volume, it has become far from obvious how to achieve timely, reliable, and 

sound infrastructure monitoring. It requires understanding the details of processes inside 

the systems and recognize how they influence each other or the whole infrastructure. The 

concept of network telemetry has been introduced to streamline this goal. It allows 

automated, fast, and simultaneous collection of a wide variety of time-series data from a 

large number of devices. 

Machine learning techniques can process, understand, and classify problematic 

infrastructure behaviours, even in massive data volumes. Despite recent significant 

advances in machine learning, their application to anomaly detection remains poorly 

understood and investigated in the network telemetry domain. This work focuses 

specifically on that, i.e., it attempts to shed new light on anomaly detection on time-series 

telemetry data. 

Broadly speaking, measurement data are created by a generating process. If this 

generating process behaves unusually due to the system’s abnormal behaviour or the 

entity that impacts the generating process, it produces anomalies. The manifestation of 

anomalous behaviour can be identified by observing the generated time-series data. 

Anomaly detection is a critical component of network and services management as it can 

provide useful insights into the operation of the network and its components.  

Our survey of anomaly detection on time-series data yielded ReRe [2], a Long 

Short-Term Memory (LSTM) based algorithm, as the most efficient state-of-the-art 

approach. It is claimed to achieve high accuracy in detecting abnormal behaviour while 

minimizing false positives and re-trainings. However, our evaluation revealed several 

limitations when ReRe was applied on time-series data. As such, we extended ReRe with 

two additional features to improve its efficacy. We named our improved algorithm Alter-

Re2. The first feature ensures that the collected data ages out; thus, its weight decreases 
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as time passes, allowing faster adaption to short-term history and more precise anomaly 

detection. The second feature serves the purpose of a sliding window that reduces the 

anomaly detector’s resource demands. Furthermore, we also introduce two 

hyperparameters to the algorithm whose adjustment is automated; eventually leading to 

optimal efficiency with no need for manually configuration. 

The evaluation of Alter-Re2 has shown promising results. We could achieve 

approximately three times higher, but never worse accuracy in detecting anomalies 

compared to the original ReRe algorithm experimenting with ten different time-series 

datasets. Not only could we eliminate issues preventing real-time use, but we were also 

able to enhance sensitivity to smaller amplitude and length anomalies. Our automated 

parameter tuning algorithm was shown to be successful at setting appropriate values after 

some timesteps for two hyperparameters – the ageing and sliding window. Furthermore, 

we also observed that this LSTM based anomaly detection algorithm was only directly 

applicable to certain data patterns. Presumably, the patterns of normal and abnormal 

behaviour depend on the type of data being analysed. However, the validity of this 

hypothesis has yet to be further investigated and will be part of our future work. 

Nevertheless, we argue the strong applicability of our approach in real-world scenarios. 

The rest of this study is organized as follows. In Section 2, we discuss related 

works from the field of anomaly detection on time-series, especially network telemetry-

related, data. In Section 3, we explain the basic principles of neural networks and their 

key concepts, including Recurrent Neural Networks (RNNs) and Long Short-Term 

Memory. Section 4 describes two state-of-the-art real-time anomaly detection algorithms 

on time-series data from 2020. Specifically, we discuss RePAD [1] and its improved 

version called ReRe [2] in detail. In Section 5, we present Alter-Re2, our approach to 

address the issues discussed above. In Section 6, we present a number of experiments to 

compare and contrast the original ReRe and our Alter-Re2 algorithms. Section 7 is a 

discussion on the different types of datasets on which these algorithms can perform well. 

In Section 8, we discuss further research implications and lay out possible future work 

directions. And finally, we draw conclusions in Section 9. 
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2 Related Work 

We originally focused on anomaly detectors deployed in network telemetry 

streams. However, we observed that there is only a handful of research in this area. Putina 

et al. [3] at Cisco developed a streaming telemetry-based anomaly detection engine for 

BGP anomalies; however, it uses a legacy clustering algorithm called DenStream [7], 

published in 2006, with limited performance. Furthermore, this detector only deals with 

BGP telemetry data. DenStream classifies incoming data into clusters of arbitrary shape. 

These are made up of core and outlier microclusters. An anomaly is detected when a data 

point is merged into an outlier microcluster. DenStream requires the calculation of certain 

parameters based on the whole dataset, so this method is not adapted for real-time use. 

We found other, less applicable works as well related to anomalies and computer 

networks such as [9], [10], [11]. Ye et al. [9] use a statistical approach to detect zero-day 

attacks and malicious intent. The paper claims that machine learning techniques miss the 

bigger picture of network behaviour. Kaiafas et al. [10] use multiple unsupervised 

machine-learning algorithms in an ensemble to identify fraudulent private exchange 

phone calls, yet their approach only works on offline data. Lazaris and Prasanna [11] aim 

to predict fine-grained network traffic using an LSTM neural network model based on 

Software-Defined Networking. 

As we did not come across any research directly applicable, we made a shift 

towards generic real-time anomaly detection algorithms. AnomalyDetectionTs (ADT) 

and AnomalyDetectionVec (ADV) are two anomaly detection algorithms, developed by 

Twitter, and available in their GitHub repository [8]. ADT works on time-series data, 

while ADV is designed for vectors without timestamp information. These algorithms 

employ statistical-based approaches, therefore require many data points. This makes them 

less applicable for streaming time-series data. ADV and ADT are parameter-sensitive 

algorithms and require a human expert to set appropriate values to achieve proper 

detection.  
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Tan et al. [6] developed a fast anomaly detection algorithm for streaming data. 

Their method, published in 2011, makes use of Half-Space Trees for machine learning. It 

processes data in one pass, requires constant memory and performs fast model updates. 

The algorithm has to be trained on normal data to be able to identify anomalies; that way, 

it cannot perform unsupervised learning. It operates using two consecutive windows, data 

is handled in batches instead of constantly updating. 

Ahmad et al. [5] developed an unsupervised real-time anomaly detector for 

streaming data. In their paper, published in 2017, the authors use the Hierarchical 

Temporal Memory (HTM) algorithm to detect anomalies in real-time streaming data. 

HTM is based on neuroscientific research. It is claimed to be extremely tolerant of noisy 

data and to adapt to changes in the statistics of the stream. Additionally, it is said to detect 

subtle temporal anomalies while minimizing false positives. There are additional 

statistical calculations needed to adapt HTMs to our task, which makes it domain-

dependent. 

Maciag et al. [4] published their work in 2019. Their method performs 

unsupervised anomaly detection in stream data. It uses evolving Spiking Neural Networks 

(eSNN) for online unsupervised anomaly detection. The concept of eSNNs heavily rely 

on the way a human brain works. The input layer transforms the data into spikes that can 

be sent between neurons. The output layer is a repository; neurons are added or merged 

to an existing one while training. Anomaly detection is based on data classification like 

in [7]. It works only on univariate data streams. 

Greenhouse [12] is an algorithm that combines state-of-the-art machine learning 

and data management techniques for anomaly prediction over high volumes of time-series 

data. The term ‘zero-positive’ means that the algorithm has to be trained on normal data 

but does not require labelled anomalies. Greenhouse uses a look-back, predict-forward 

approach to detect anomalies. This means, it employs an LSTM model [13] to predict 

new values based on old ones, then compares the prediction to the actual data point. 

RePAD (Real-time Proactive Anomaly Detection for Time Series) [1] is an 

improvement of Greenhouse that eliminates the need for normal training data. ReRe (A 

Lightweight Real-time Ready-to-Go Anomaly Detection Approach for Time Series) [2] 

is an upgrade of RePAD by the same authors that aims to eliminate false positive anomaly 

detections. We give a detailed description of these two methods in Section 4. 
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In summary, we were unable to identify any approach directly aimed at anomaly 

detection in streaming telemetry data using modern detection algorithms. Generic real-

time anomaly detectors, however, have seen a major improvement in the last decade. 

Nevertheless, most of these methods fall short in a few important details, as some cannot 

perform anomaly detection unsupervised, others need domain knowledge when setting 

certain parameters and some cannot adapt to changing behaviours. We chose ReRe as the 

basis of our research, as it fulfils all of our requirements. 
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3 Neural Networks 

We start with a brief overview of artificial neural networks, emphasizing on one 

subcategory, the Long Short-Term Memory Recurrent Neural Networks. This 

information is necessary to gain a better understanding of algorithms that build neural 

network models, often used for data prediction. 

3.1 Concept 

A neural network1 consists of layers of interconnected neurons that form a circuit, 

often represented as vertices and edges of a graph. A simplified version of a feedforward 

neural network can be seen in Figure 3-1. The term ‘feedforward’ refers to the fact that 

connections in such networks never form a cycle. Refer to the book “An Introduction to 

Neural Networks” [14] for a more detailed explanation. 

 
Figure 3-1: Simplified layout of a feedforward neural network. 

As it is apparent from Figure 3-1, one neuron can have many input and output 

connections. Each connection has a weight value assigned to it that represents how 

important or emphasized that connection is. Information propagates through these 

networks the following way: Data enters the neural network at the input layer that encodes 

it into the values of nodes. A so-called propagation function then calculates an input value 

for each neuron. This value is the weighted sum of the output of all the neurons from the 

previous layer that have a connection to the given neuron. The output layer then 

transforms information from a set of numbers in the layer into the desired format. 

 

1 This study refers to artificial neural networks as simply ’neural networks’. 

input layer hidden layer(s) output layer
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When training a neural network model, we need to have a training dataset (also 

referred to as labels or ground truth) that assigns correct output values to input values. 

Using such a dataset is called supervised learning, and the main task is to adjust 

connection weights (and other possible values) in order to minimize some form of an 

error in the output (e.g., how close a prediction is to the real value). 

This adjustment is made through the algorithm of backpropagation using a 

predefined loss function that determines a way to evaluate each output compared to the 

training dataset. Backpropagation works by starting at the output layer and computing the 

gradient of the loss function with respect to each weight, then it moves iteratively layer 

by layer towards the input tuning weights and calculating gradients trying to minimize 

the loss function usually by the method of gradient descent [20]. Thus, training is done in 

three steps: 

1. A forward pass on the network, where a prediction is made. 

2. The prediction is compared to the ground truth using the loss function. 

3. A backwards pass is performed, where the weights are adjusted to 

minimize the loss function. 

In neural networks, the number of epochs is a key factor that determines how 

quickly a model can be trained. However, estimating the optimal number of epochs is not 

simple and yields a trade-off between underfitting and overfitting. On the one hand, if the 

epoch number is too low, the neural network does not have enough passes to learn patterns 

in the training data, thus leading to a poor performing model. This is called underfitting. 

On the other hand, if it is too high, the neural network will be tuned too exactly to the 

training data and will not function that well on other data points. This is called overfitting. 

This trade-off is one of the key challenges in machine learning. 
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3.2 Recurrent Neural Networks 

The main difference between RNNs and simple feedforward neural networks is a 

so-called hidden state. The main purpose of it is to enable the network to ‘remember’ 

previous states by creating a feedback loop in the hidden layer(s). Figure 3-2 displays the 

recursive and unfolded representation of RNNs [19], where each timestep can be 

considered a new network model with input from the previous one. 

 
Figure 3-2: Structure of RNNs. [19] 

A hidden state is a memory unit that is capable of storing information from the 

previous step. That is why RNNs are well-suited for applications on time-series data, 

where it is crucial to maintain some understanding of previous timesteps to produce a 

meaningful output. For example, when attempting speech recognition, it is important to 

keep in mind previous words in a sentence to understand the meaning of the whole 

sentence instead of just words one by one. Similarly, when using RNNs for time-series 

prediction, it is critical to ‘remember’ the influence of older training samples, not just the 

last one.  

3.2.1 Vanishing Gradient 

There is one issue with RNNs, however, that makes them almost unusable in their 

original form for real-world applications, namely the vanishing gradient problem. 

Because of the way neural networks are trained (refer back to Section 3.1), RNNs have 

what is called a ‘short-term memory’. This can be understood using the unfolded 

representation visible in Figure 3-2, where each timestep is thought of as a layer in the 

network. That is why, with RNNs, the training algorithm is called backpropagation 

through time. Gradient values shrink exponentially as it moves back through time, which 
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means that older timesteps are almost not at all taken into account when adjusting weights 

(the network ‘forgets’ older samples). 

For more information on RNNs and LSTM networks refer to [15], titled 

“Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory 

(LSTM) network”. This work explains all important concepts and methods related to 

these neural networks. 

3.3 Long Short-Term Memory 

The concept of LSTM RNNs was first developed by S. Hochreiter and J. 

Schmidhuber in 1997 [13]. Their goal was to mitigate the effects of the vanishing gradient 

problem to enable more widespread applicability of RNNs. The key difference in the 

structure of a simple RNN and an LSTM is in the neurons (also referred to as units or 

cells). By introducing gates within the units, LSTMs are capable of controlling which 

pieces of information to ‘remember’, and for how long. The structural comparison of an 

RNN and an LSTM can be seen in Figure 3-3  [21]. The symbols within the gates denote 

the different activation functions used by the gates that determine how the input of the 

gate is processed (𝜎: sigmoid activation, 𝜙: tanh activation). 

 
Figure 3-3: Comparison of the structures of RNNs and LSTMs. [21] 

LSTMs managed to reduce the effects of the vanishing gradient to such a great 

extent, that current machine learning research is very often based on the original or an 

improved version of these neural networks. This is supported by the fact that 14𝑘 of the 

total 17𝑘 citations of the original paper [13] were received in the previous two years.  
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4 State-of-the-art Algorithms Based on LSTM 

4.1 RePAD 

RePAD [1] is a cutting-edge LSTM RNN-based algorithm designed for time- 

series anomaly detection. It was published in March 2020 by Ming-Chang Lee et al. The 

authors claim it is capable of detecting anomalies proactively in real-time, without any 

domain knowledge. 

RePAD uses short-term historical data points to predict the upcoming value; then, 

it compares this prediction with the real value to determine if an anomaly is likely to 

happen in the near future. RePAD can adjust detection thresholds dynamically, making it 

well-suited to tolerate minor pattern changes as well. Its fast convergence (i.e., it can 

detect anomalies soon after being turned on) and unsupervised training (i.e., it does not 

require a labelled training dataset) sets it apart from previous approaches. 

4.1.1 LSTM Model 

One key part of RePAD is the LSTM model used for data prediction. If an LSTM 

model has a complicated structure or the training data is large, training time increases 

significantly, which limits real-time use. That is why the LSTM model used in RePAD 

only has one hidden layer with 10 hidden units. Additionally, a fast-learning speed is 

guaranteed by a learning rate of 0.15. As mentioned in Section 3.1, the number of epochs 

is a key factor in determining the precision and speed of a neural network model. RePAD 

employs the algorithm of Early Stopping [16] to choose the number of epochs 

dynamically, to prevent overfitting and underfitting. 

4.1.2 Details of the Algorithm 

RePAD is based on a so-called ‘look back, predict forward’ approach. This means 

that it takes the previous 𝑏 data points (𝑏 is the look-back parameter) and uses them to 

predict the next 𝑓 data points (𝑓 is the predict-forward parameter). In paper [1], the 

RePAD algorithm is stated with 𝑓 = 1 always. The algorithm can be broken down into 

four steps that follow each other. 
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Variables used in the explanation: 

• 𝑏 or 𝐵: look-back parameter 

• 𝑡:  current timestep, starts from 𝑡 = 0 

• 𝑣𝑥: data point at timestep 𝑥 

• 𝑣�̂�: predicted data point for timestep 𝑥 

• 𝑀, 𝑀′: LSTM models 

• 𝐴𝐴𝑅𝐸𝑥: Average Absolute Relative Error at timestep 𝑥 

• 𝑡ℎ𝑑𝑥: threshold value at timestep 𝑥 

• 𝜇𝐴𝐴𝑅𝐸𝑥: the average of 𝐴𝐴𝑅𝐸𝑥 values at timestep 𝑥 

• 𝜎𝐴𝐴𝑅𝐸𝑥: the standard deviation of 𝐴𝐴𝑅𝐸𝑥 values at timestep 𝑥 

Equations for the algorithm: 

𝐴𝐴𝑅𝐸𝑡 =
1

𝑡 − 𝑏 + 1 ⋅  ∑
|𝑣𝑦 − 𝑣�̂�|

𝑣𝑦

𝑡

𝑦=𝑏

 (1) 

 
𝑡ℎ𝑑𝑡 = 𝜇𝐴𝐴𝑅𝐸𝑡 + 3 ⋅ 𝜎𝐴𝐴𝑅𝐸𝑡 (2) 

 

𝜇𝐴𝐴𝑅𝐸𝑡 =
1

𝑡 − 𝑏 + 1 ⋅ ∑ 𝐴𝐴𝑅𝐸𝑦

𝑡

𝑦=𝑏

 (3) 

 

𝜎𝐴𝐴𝑅𝐸𝑡 = √∑ (𝐴𝐴𝑅𝐸𝑦 − 𝜇𝐴𝐴𝑅𝐸𝑡)2𝑡
𝑦=𝑏

𝑡 − 𝑏 + 1  (4) 

Step 1 

if t < b – 1 

In this step, RePAD collects data points passively. 

Collected values: 𝑣0, 𝑣1, … , 𝑣𝑏−2, so exactly 𝑏 − 1 pieces. 

Step 2 

if t == b – 1 

When time reaches the value 𝑏 − 1, RePAD trains an LSTM model 𝑀 using the 

first 𝑏 data points (𝑣0, … , 𝑣𝑡 = 𝑣𝑏−1). RePAD then uses 𝑀 to predict 𝑣𝑡+1̂ = 𝑣𝑏+1̂. 
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Step 3 

if b – 1 < t < 2b – 1 

For every timestep, RePAD calculates a so-called average absolute relative error 

using Eq. (1).  

Then it trains the LSTM model 𝑀 using the previous 𝑏 data points: 𝑣𝑡−𝑏+1, … , 𝑣𝑡. 

𝑀 then is used to predict 𝑣𝑡+1̂. 

Step 4 

if t >= 2b – 1 

Once RePAD gets to this step, it is already capable of detecting anomalies, for it 

has at least 𝑏 number of 𝐴𝐴𝑅𝐸𝑥 values. Since 𝑏 is a small integer, RePAD has a short 

preparation period. The following then happens with each new timestep: 

RePAD calculates 𝐴𝐴𝑅𝐸𝑡 using Eq. (1). 

It then calculates the 𝑡ℎ𝑑𝑡 threshold value using Eq. (2), which takes the average 

of all 𝐴𝐴𝑅𝐸𝑥’s, then adds their standard deviation three times as seen in Eq. (3) and (4). 

These two values (𝐴𝐴𝑅𝐸𝑡 and 𝑡ℎ𝑑𝑡) are then compared. 

If 𝐴𝐴𝑅𝐸𝑡 ≤ 𝑡ℎ𝑑𝑡, that means the current data point 𝑣𝑡 is similar to the previous 

ones, as 𝑀 was able to predict it to an appropriate precision level, there is no anomaly. 

RePAD then uses 𝑀 to predict 𝑣𝑡+1̂. 

However, if 𝐴𝐴𝑅𝐸𝑡 > 𝑡ℎ𝑑𝑡, there may be two different reasons for that. Either 

the data pattern is slightly changing, or there is an anomaly. To make a decision, RePAD 

trains 𝑀′ using the previous 𝑏 data points, then recalculates the 𝐴𝐴𝑅𝐸𝑡 error and 𝑡ℎ𝑑𝑡 

threshold values. If 𝐴𝐴𝑅𝐸𝑡 > 𝑡ℎ𝑑𝑡 still holds, RePAD signals an anomaly to the user, 

then uses 𝑀 to predict 𝑣𝑡+1̂, it discards 𝑀′. But if 𝐴𝐴𝑅𝐸𝑡 ≤ 𝑡ℎ𝑑𝑡 using the new model, 

RePAD concludes that the data pattern is changing and replaces 𝑀 with 𝑀′, so that it can 

predict new data points accurately. 

Using this mechanism RePAD can adapt to small pattern changes in the data 

stream. Additionally, the LSTM model only needs to be retrained when a pattern change 

is detected, thus greatly reducing CPU load. 
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4.2 ReRe 

ReRe [2] is an improvement of RePAD [1], developed by the same authors. The 

paper is currently available only as a preprint, its latest version uploaded in June 2020. 

According to experiments in [1], RePAD suffers from a great number of false positive 

anomaly detections (see Section 7 for our comments on false positives). ReRe attempts 

to target exactly this issue. 

ReRe employs two LSTM models instead of one that provide two levels of 

detection sensitivity. These two models are deployed in two detectors (detector 1 and 2). 

An anomaly or pattern change is only detected and signalled by the ReRe algorithm if 

both detectors return the same detection for the given timestep. 

Detector 1 works as RePAD (refer to Section 4.1.2 for more details). It acquires 𝑡 

and 𝑣𝑡 values from the ReRe algorithm and produces signals ‘normal’, ‘pattern change’ 

and ‘anomaly’ as outputs. Internally, it stores and calculates 𝐴𝐴𝑅𝐸𝑡 and 𝑡ℎ𝑑𝑡 using 

RePAD methods and equations. When it detects a pattern change, it retrains its own 

LSTM model, 𝑀1 that it uses for data value prediction. 

Detector 2 has a few key differences from RePAD. It uses the same algorithm 

structure; it also acquires 𝑡 and 𝑣𝑡 from ReRe; the only change is in the input values for 

𝐴𝐴𝑅𝐸𝑡 and 𝑡ℎ𝑑𝑡 calculations. Namely, detector 2 uses its own 𝑀2 LSTM model to predict 

its own values. 𝑀2 is structurally identical to 𝑀1 but due to different retrain timesteps it 

will produce different predictions. And the reason for the different pattern change 

detection timesteps is the different calculation of the threshold 𝑡ℎ𝑑𝑡. Detector 2 uses only 

𝐴𝐴𝑅𝐸𝑥 values for threshold calculation, where 𝑣𝑥 is considered ‘normal’ (no ‘pattern 

change’ or ‘anomaly’) by itself. This one key difference means that it produces different 

results and is able to disable anomalies detected by detector 1 (RePAD). We give a more 

detailed evaluation of ReRe in Section 6.2. 
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4.3 Limitations of ReRe 

As described in Section 4, ReRe can only detect anomalies, when both detectors 

have an 𝐴𝐴𝑅𝐸𝑡 value higher than 𝑡ℎ𝑑𝑡, and both detectors decide, there is no pattern 

change. That means, normally, 𝐴𝐴𝑅𝐸𝑦 values are lower than 𝑡ℎ𝑑𝑦.  

In the design of RePAD and subsequently ReRe, 𝐴𝐴𝑅𝐸𝑡 and 𝑡ℎ𝑑𝑡 values are 

computed using Eq. (1) and (2). Both of these values include a sum that starts at a fixed 

value, namely timestep 𝑦 = 𝑏 and ends at the current timestep 𝑦 = 𝑡. All terms in these 

sums have an equal weight of 1, which means all terms have an equal priority in 

determining current 𝐴𝐴𝑅𝐸𝑡 and 𝑡ℎ𝑑𝑡 values. 

This results in an unfortunate consequence to the speed of anomaly detection. 

Figure 4-1 illustrates this issue2. When the algorithm has started just recently, 𝐴𝐴𝑅𝐸𝑡 

calculation has only a few (absolute relative error) terms to take the average of. This 

means when an anomaly occurs in the data, and error terms instantly get large (due to the 

big difference in the predicted and actual data points), 𝐴𝐴𝑅𝐸𝑦 values also get large fairly 

quickly. This is the way how it should work for all timesteps. 

 
Figure 4-1: The slope of AARE depends on the current timestep. 

In Figure 4-1, this situation is illustrated on the left side of the graph. At timestep 

𝑎1, there is an anomaly in the dataset. 𝐴𝐴𝑅𝐸𝑦 values start to rise quickly as new absolute 

relative error terms are high, and there are only a few error terms to take the average of. 

At timestep 𝑑1, the 𝐴𝐴𝑅𝐸𝑦 curve crosses the 𝑡ℎ𝑑𝑦 curve, and an anomaly is detected. 

 

2 Note that the figure is exaggerated for better visibility. In reality, 𝑎1 and 𝑑1 are closer to each 

other. 
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However, when a considerable time passes (𝐷 is at least a few thousand 

timesteps), there are many more terms in 𝐴𝐴𝑅𝐸𝑡 calculation to take the average of. This 

is the reason why when an anomaly occurs at timestep 𝑎2, the 𝐴𝐴𝑅𝐸𝑦 curve starts to rise 

only slowly, as averages increase slower with more terms (the influence of one new high 

term is proportionally less). As the beginning timestep for the average is always 𝑦 = 𝑏, 

the slope gets less and less steep as 𝑦 increases. That is why the anomaly at 𝑎2 is only 

detected at 𝑑2. 

In the extreme case, as the algorithm is planned to run real-time uninterrupted, 

anomalies start to get unnoticed after a certain timestep as the 𝐴𝐴𝑅𝐸𝑦 curve never reaches 

the 𝑡ℎ𝑑𝑦 curve, it normalises before normal data points arrive again. This is a major 

drawback when ReRe is planned to run persistently. 

There is another issue with continuous real-time use. In the current 

implementation of ReRe, all original data points (𝑣𝑦), all predicted data points (𝑣�̂�), all 

AARE error values (𝐴𝐴𝑅𝐸𝑦), all threshold values (𝑡ℎ𝑑𝑦), moreover all detected 

anomalies and pattern changes have to be stored from the moment they are generated for 

as long as ReRe is running. This means that in order for ReRe to run for 𝑇 total timesteps, 

6𝑇 data points have to be stored locally. Consequently, there is no upper bound on the 

memory requirements of the algorithm, and if it runs out of space, ReRe is going to stop 

with an error. Admittedly, this would still involve a presumably long operation time, as 

modern computers have terabytes of storage, and a timestep usually takes up around a 

few hundred bytes, but this approach is far from being optimal. 
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5 Alter-Re2 

We introduce two extensions, such as ageing and window-mode, to the ReRe 

algorithm (refer to Section 4.2) in this section to address important limitations in the 

design of ReRe. Then, we present our implementation for tuning both parameters of the 

proposed upgrades (i.e., age power and window-mode). 

5.1 Ageing 

To address the issue described in Section 4.3, we decided to implement the ageing 

of the terms in 𝐴𝐴𝑅𝐸𝑦 calculation. This involves devising a method to place greater 

emphasis on a few previous data points instead of averaging them with the same weight. 

So as time elapses, the weight of a given data point decreases. 

This means that an extra ageing coefficient 𝐶𝑦 is introduced to Eq. (1), which 

results in the following modified formula: 

𝐴𝐴𝑅𝐸𝑡,   𝑎𝑔𝑖𝑛𝑔 =
1

𝑡 − 𝑏 + 1 ⋅  ∑ 𝐶𝑦 ⋅
|𝑣𝑦 − 𝑣�̂�|

𝑣𝑦

𝑡

𝑦=𝑏

 (5) 

This coefficient 𝐶𝑦 is calculated using the following equation: 

𝐶𝑦 = (
𝑦 − 𝑊
𝑡 − 𝑊

)
𝐴𝑃

 (6) 

Variables used (beyond the ones introduced in Section 4.1.2): 

• y: timestep running variable in the sum 

• 𝑊:  beginning timestep of the Window 

• 𝐴𝑃: Age Power 

• 𝐶𝑦: ageing coefficient 

The visual aid for understanding the concept of ageing can be seen in Figure 5-1. 

The figure incorporates the design of a sliding window as well, introduced in Section 5.2. 

To see the improvements of ageing only, settings 𝑊 = 0 and WINDOW_SIZE = 𝑡 

should be used. As it is apparent from Figure 5-1 and Eq. (6), the age power variable 𝐴𝑃 

determines the aggressiveness of ageing, i.e., how strongly the algorithm should consider 

the previous few data points. If 𝐴𝑃 = 1, there is a linear ageing. Negative numbers are 

not recommended, as they result in inverse ageing. Thus, 𝐴𝑃 becomes an additional 

hyperparameter of the algorithm. 
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Figure 5-1: The operational principle of ageing. 

Equation (6) always produces a number between 0 and 1 for 𝐶𝑦 if 𝑦 ∈ [𝑊, 𝑡]. This 

way, the last few data points will remain approximately the same, while the ones closer 

to the start will be scaled down. 

The issue of slow or no reaction to anomalies after a considerable time, discussed 

in Section 4.3, can be addressed with the ageing of the terms in the sum, as new high error 

terms influence 𝐴𝐴𝑅𝐸𝑦 values much more than older smaller ones. We assess further this 

improvement in Section 6.3. 

5.2 Window-mode 

The other limitation of ReRe discussed at the end of Section 4.3 is the need to 

store all data from the point in time they were generated. We can mitigate this issue by 

storing only the previous value of the average error terms, and the number of data points 

it was calculated from. This recursive method formalized below: 

𝐴𝐴𝑅𝐸𝑡 =
1

𝑡 − 𝑏 + 1 ⋅ (𝐴𝐴𝑅𝐸𝑡−1 ⋅ (𝑡 − 𝑏) +
|𝑣𝑡 − 𝑣�̂�|

𝑣𝑡
) (7) 

However, in order to calculate the threshold value 𝑡ℎ𝑑𝑡, we need to know the 

standard deviation of the 𝐴𝐴𝑅𝐸𝑦 values. Unfortunately, this 𝜎𝐴𝐴𝑅𝐸𝑡 value cannot be 

expressed only using values from the previous timestep 𝑡 − 1 and the number of timesteps 

due to the changing 𝜇𝐴𝐴𝑅𝐸𝑦 values in every timestep. Therefore every 𝐴𝐴𝑅𝐸𝑦 value has 

to be stored from the start. 

 y
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To address the need for this ‘unlimited’ storage, and to entirely eliminate the 

necessity to take into account very old data points, we implemented a sliding window in 

the algorithm (see Figure 5-1 for a visual representation). The sliding window has one 

parameter, the WINDOW_SIZE or 𝑊𝑆. The window beginning timestep 𝑊 is calculated 

in Eq. (8). Data points before the beginning of the window are discarded, and the 

equations for ReRe are modified as follows in Eq. (9) – (12) . These equations also include 

the implementation of ageing. If ageing is disabled, all values of 𝐶𝑦 are set to 1. If 

window-mode is disabled, the window size parameter 𝑊𝑆 is set to the current timestep 𝑡. 

This way, Eq. (8) always chooses the timestep 𝑏 as the beginning of the window because 

that is when the first value of 𝐴𝐴𝑅𝐸𝑦 is produced. 

{𝑊 = 𝑡 − 𝑊𝑆 + 1          𝑖𝑓 𝑡 − 𝑊𝑆 + 1 > 𝑏
𝑊 = 𝑏                             𝑖𝑓 𝑡 − 𝑊𝑆 + 1 ≤ 𝑏  (8) 

 

𝐴𝐴𝑅𝐸𝑡 =
1

𝑡 − 𝑏 + 1 ⋅  ∑ 𝐶𝑦 ⋅
|𝑣𝑦 − 𝑣�̂�|

𝑣𝑦

𝑡

𝑦=𝑊

 (9) 

 
𝑡ℎ𝑑𝑡 = 𝜇𝐴𝐴𝑅𝐸𝑡 + 3 ⋅ 𝜎𝐴𝐴𝑅𝐸𝑡 (10) 

 

𝜇𝐴𝐴𝑅𝐸𝑡 =
1

𝑡 − 𝑏 + 1 ⋅ ∑ 𝐴𝐴𝑅𝐸𝑦

𝑡

𝑦=𝑊

 (11) 

 

𝜎𝐴𝐴𝑅𝐸𝑡 = √∑ (𝐴𝐴𝑅𝐸𝑦 − 𝜇𝐴𝐴𝑅𝐸𝑡)2𝑡
𝑦=𝑊

𝑡 − 𝑏 + 1  (12) 

As shown in Figure 5-1, the introduction of ageing (see Section 5.1) has been 

adapted for the sliding window. Eq. (6) produces values of 0 at the beginning of the 

window (timestep 𝑊) and produces values of 1 at the current timestep 𝑡. 

The implemented sliding window has an extra benefit. 𝑡ℎ𝑑𝑦 values are calculated 

using 𝐴𝐴𝑅𝐸𝑦 values only from within the window. Therefore, the detection threshold 

adjusts faster and more precisely, and high 𝐴𝐴𝑅𝐸𝑦 values from a few thousand timesteps 

before do not distort the performance until the very end of operation. 
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5.3 Automated hyperparameter tuning 

In this section, we first discuss the effects of the WINDOW_SIZE and 

AGE_POWER parameters on detection. Then, we introduce our proposed algorithm for 

automated adjustment of these two parameters. We show that this automation can help 

optimizing the values of the window size and age power, which normally would need to 

be set manually. 

5.3.1 Devising a metric for the size of data points used 

Both the WINDOW_SIZE and AGE_POWER parameters have an indirect 

relation to the accuracy of anomaly detection. Precisely, they impact the volume of data 

points and their weights that serve as inputs when Alter-Re2 calculates the 𝐴𝐴𝑅𝐸𝑦 and 

𝑡ℎ𝑑𝑦 values. This relationship is qualitatively showed in Figure 5-1.  

From the figure, we find that an increase of 𝐴𝑃 results in fewer (and newer) data 

points being taken into consideration. Decreasing it, on the other hand, has the opposite 

effect, enabling older data points within the window as well to have an impact on the 

calculated 𝐴𝐴𝑅𝐸𝑦 value. 

The opposite is true for 𝑊𝑆. As we increase the size of the window, the number 

of data points used for calculation also increases, and reducing the size also reduces the 

number of values taken into consideration. 

The above discussed qualitative analysis, however, does not allow for precise 

tuning of these parameters; their effect has to be evaluated numerically. To achieve this, 

we propose a metric that relates to the number of data points and the weights introduced 

by ageing. Namely, the area under the 𝐶𝑦 curve, 𝐴(𝐴𝑃, 𝑊𝑆), as shown in Figure 5-2. 

This area changes exactly as expected based on the discussion above. Increasing 

𝐴𝑃 reduces it while decreasing 𝐴𝑃 increases its value. On the other hand, expanding the 

window size results in a larger area, whereas a smaller window yields a smaller area. 

Therefore, we consider it a useful metric for the size of data taken into consideration. 

However, its calculation has to utilize only a small portion of the available resources to 

justify its usefulness. An area under a curve from a certain timestep to another can be 

calculated using definite integrals. This derivation is present in Equation (13). 
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Figure 5-2: The area under the Cy curve. 

𝐴(𝐴𝑃, 𝑊𝑆) = ∫ 𝐶𝑦(𝑦) ⋅ 𝑑𝑦
𝑡

𝑊

= ∫ (
𝑦 − 𝑊
𝑡 − 𝑊

)
𝐴𝑃

⋅ 𝑑𝑦
𝑡

𝑊

= ⋯ = 

= [
(𝑦 − 𝑊)𝐴𝑃+1

(𝑡 − 𝑊)𝐴𝑃 ⋅ (𝐴𝑃 + 1)]
𝑊

𝑡

=
𝑡 − 𝑊
𝐴𝑃 + 1 

(13) 

Substituting 𝑊 = 𝑡 − 𝑊𝑆 + 1 after enough timesteps, as shown by Equation (8) 

results in Equation (14). 

𝑨(𝑨𝑷, 𝑾𝑺) =
𝑡 − (𝑡 − 𝑊𝑆 + 1)

𝐴𝑃 + 1 =
𝑾𝑺 − 𝟏
𝑨𝑷 + 𝟏  (14) 

This relationship (derived above in Equation (14)) between the area under the 𝐶𝑦 

curve and the 𝑊𝑆 and 𝐴𝑃 parameters meets all the criteria defined above. It is lightweight 

in terms of computation complexity, contains only the two important parameters, and 

behaves exactly like the qualitative analysis predicted.  

If the goal is to preserve this area (𝐴(𝐴𝑃, 𝑊𝑆)) while changing both 𝑊𝑆 and 𝐴𝑃, 

we can use the following formula (displayed in Equation (15)). 

𝑊𝑆𝑦 − 1
𝐴𝑃𝑦 + 1 ≔

𝑊𝑆𝑦+1 − 1
𝐴𝑃𝑦+1 + 1  (15) 
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We can rearrange Equation (15) to express 𝐴𝑃𝑦+1 using the other variables. This 

can be useful if our aim is to adjust 𝐴𝑃 exactly so that the new area using 𝑊𝑆𝑦+1 is the 

same as the old one. This rule for 𝐴𝑃 setting is displayed in Equation (16). 

𝐴𝑃𝑦+1 =
(𝑊𝑆𝑦+1 − 1) ⋅ (𝐴𝑃𝑦 − 1)

𝑊𝑆𝑦 − 1
 (16) 

5.3.2 Automated tuning algorithm steps 

Utilizing the metric described in Section 5.3.1 and the findings on signs of extreme 

parameter values described in Section 5.3.3, we devise an algorithm that is capable of 

automatically adjusting the 𝑊𝑆 and 𝐴𝑃 parameters. The algorithm consists of four steps. 

Step 1 – default values 

if t == 0 

In this step, Alter-Re2 sets the default values for the parameters. The window size 

is determined based on the 𝐵 parameter (see Section 4.1), as shown in Equation (17). 

Since the 𝐵 parameter determines how many data points the LSTM model uses for 

training and prediction, it is well suited to be the basis for the window size, also a 

parameter that determines the number of data points to be used, but for another purpose. 

𝑊𝑆𝑑𝑒𝑓 = 5 ⋅ 𝐵 (17) 

We consider this a small window based on our experiments, but since it can be 

both increased and decreased during various steps of the algorithm, this bears little 

significance. The default value for the AGE_POWER parameter results in linear ageing 

at the beginning, as shown in Equation (18). This can also be considered a smaller value. 

𝐴𝑃𝑑𝑒𝑓 = 1 (18) 

These default values determine a fixed area metric, which can be calculated as 

shown in Equation (19). 

𝐴𝑑𝑒𝑓 =
𝑊𝑆𝑑𝑒𝑓 − 1
𝐴𝑃𝑑𝑒𝑓 + 1 =

5𝐵 − 1
2 = 2,5𝐵 − 0,5 ≈ 2,5𝐵 (19) 
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Step 2 – initial increase 

if t == 2B – 1 + 2B*i 

The second step is the initial increase of both 𝑊𝑆 and 𝐴𝑃. At this stage, the 

WINDOW_SIZE and the AGE_POWER parameters are most likely too small for the 

dataset given the default values (see Step 1 – default values above). Additionally, these 

original values determine an area metric calculated in Equation (19) that corresponds to 

only a few data points taken into consideration. As the optimal area metric depends on 

the actual dataset, the most straightforward approach seems to be starting from a small 

one initially and increasing it until satisfactory. Therefore, Alter-Re2 only checks if the 

window size is too small, using the so-called WS_MIN criterion (see Section 5.3.3). If it 

is true (i.e., the window needs to be larger), both the 𝑊𝑆 and 𝐴𝑃 parameters are increased 

as shown in Equation (20) and Equation (21). ([𝑥] means 𝑥 rounded to the nearest 

integer). 

𝑊𝑆𝑦+1 = [2 ⋅ 𝑊𝑆𝑦] (20) 

𝐴𝑃𝑦+1 = 1,5 ⋅ 𝐴𝑃𝑦 (21) 

These formulas have three distinct effects. Trivially, both 𝑊𝑆 and 𝐴𝑃 are 

increased, getting them closer to their optimal values. The third effect is on the area 

metric. The coefficients in the formulas are chosen so that the area under the 𝐶𝑦(𝑦) curve 

also increases, allowing more data points at once to have an impact on detection. 

The number 𝑖 stores how many times this step was performed, starting from 0. As 

long as WS_MIN is true, 𝑖 is incremented by one, and this step is performed again. When 

WS_MIN returns false, a Boolean storing whether this initial step is over is set to true, 

and 𝑖 is fixed. After this, Alter-Re2 never returns to this step, alternating instead between 

steps 3 and 4 until the algorithm is stopped. 

Step 3 – adjusting the window 

if t == 2B – 1 + 2B*i + B^2*j 

After the initial increase of the parameters, this step is performed at every 𝐵2 

timesteps, as seen in the code above. Alter-Re2 performs three checks at the beginning. 

First, it determines if a parameter adjustment has occurred in the last 𝐵 timesteps. If it 

has, execution of the step stops. If not, the algorithm performs two additional checks, 
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namely WS_MIN and WS_MAX (see Section 5.3.3) to determine whether the 

WINDOW_SIZE needs to be adjusted. 

If the two criteria return different logical values (i.e., true and false or false and 

true), Alter-Re2 proceeds to perform the adjustment. If the WS_MIN condition is 

signalled, 𝑊𝑆 and 𝐴𝑃 are increased. The WINDOW_SIZE is determined by taking the 

average of the last appropriate higher 𝑊𝑆 and the current one. If there is none, it is 

doubled. Similarly, in the other case (when WS_MAX is signalled), 𝑊𝑆 is reduced by 

taking the average of the last appropriate lower 𝑊𝑆 and the current one. Also like in the 

previous case, if there is no lower value applicable, it is halved. The AGE_POWER in 

both cases is modified using Equation (16), to maintain the area metric. This is done so 

that only the window is adjusted, and not the number of data points taken into 

consideration (see Step 4 – adjusting ageing). 

If the two criteria return the same logical value (i.e., true, true or false, false), that 

means that the size of the window is set and no additional changes are performed in this 

step. The running index 𝑗 stores the number of times this step was initiated, starting 

from 0. Every time the initial checks are performed, besides j, the 𝑘 parameter (see Step 

4 – adjusting ageing) is also incremented by one. 

Step 4 – adjusting ageing 

if t == 2B – 1 + 2B*i + B^2 + floor(B^2/4)*k 

When Alter-Re2 reaches this step, it begins similarly as Step 3 – adjusting the 

window starts; it checks three conditions. The first one is the same: whether there has 

been an adjustment in the last 𝐵 timesteps. If yes, execution of this step stops. If not, the 

two additional criteria, namely AP_MIN and AP_MAX are evaluated. Also, similarly, if 

they both return the same Boolean value, the 𝐴𝑃 parameter is set, no additional 

adjustments are performed. Otherwise, Alter-re2 adjusts the AGE_POWER (and only that 

variable) as the criteria suggest. If AP_MIN is true, 𝐴𝑃 is increased by 25%, and if 

AP_MAX is true, it is decreased by 25%. 

This step follows Step 3 – adjusting the window initially, and then is performed 

four times more frequently. This is done to enable fine tuning of detection by only 

adjusting 𝐴𝑃. The variable 𝑘 is an integer that shows how many times this step was 

started. It starts with 0, and is incremented by one every time the initial checks are 

performed. 
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5.3.3 Detection of extreme parameter values 

To facilitate the detections listed below, a new database is established during 

operation. It only stores the following three pieces of information: timestep, anomaly 

detected (True or False), pattern change detected (True or False). The length of this 

database is not determined by the WINDOW_SIZE parameter, thus allowing independent 

operation. Its size is computed instead using Equation (22). 

𝐿𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒 = 𝐵2 (22) 

We also refer to this parameter (𝐿𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒) by the size of the signal window. The 

following subsections list the criteria for determining whether a certain parameter (𝑊𝑆 

or 𝐴𝑃) is at an extreme value (too small or large). 

Too large window 

WS_MAX = long_anomalies  

Detecting a too large 𝑊𝑆 parameter can be achieved through measuring the 

number of continuous timesteps an anomaly is signalled for. Due to the reasons discussed 

in Section 4.3, when there are too many data points taken into consideration, the slope of 

the 𝐴𝐴𝑅𝐸𝑦 curve gets small. That means, that Alter-Re2 adjusts to new data patterns 

slowly in this case, resulting in anomalies signalled for a significantly longer time then 

usually (based on our experience, the assessed anomalies never lasted more than just a 

few timesteps). Thus, the detector’s only job is to count the number of timesteps an 

anomaly is signalled for. If it gets larger than 2 ⋅ 𝐵, a long anomaly is reported. 

Too small window 

WS_MIN = anomaly_flapping or frequent_signals 

If a window is too small, Alter-Re2 does not have enough information to reliably 

determine long-term patterns and thresholds, and detection becomes unstable. This results 

in two different noticeable phenomena. The first one is anomaly flapping, i.e., anomaly 

signalling turning on and off rapidly. This condition is true when an anomaly is signalled 

for 𝑛 timesteps, then no detection is made for no longer then 1,5 ⋅ 𝑛 timesteps, then 

another anomaly is signalled. This behaviour is the result of the 𝐴𝐴𝑅𝐸𝑦 and 𝑡ℎ𝑑𝑦 curves 

crossing frequently due to instability introduced by the small window. 
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The other criterion checked is frequent signalling of anomalies or pattern changes. 

The reason for this is the same as discussed above. Too few data points in a window result 

in unstable operation, that manifests in abnormally large number of pattern changes and 

anomaly signals. This, however, can only be determined based on the patterns in the 

original dataset, as different time series will require different anomaly and pattern change 

detections. To achieve this dataset-dependent detection of too frequent signals, a 

threshold percentage is calculated based on the changes in the dataset using Equation 

(23), where 𝑆𝑇 is referred to as the signal frequency threshold. 

𝑆𝑇 =
10

𝑡 − 𝑊 ⋅ ∑ (𝑣𝑦+1 − 𝑣𝑦)2
𝑡−1

𝑦=𝑊

 (23) 

This metric is useful as a threshold for the frequency of signals, as when there are 

many high-amplitude changes, more anomaly and pattern change signals are expected, 

and 𝑆𝑇 also evaluates to a higher value. After calculating 𝑆𝑇, Alter-Re2 counts the actual 

number of signals in the database discussed in Section 5.3.3. Signals (i.e., anomaly or 

pattern change detections) count as one even if they are present for multiple timesteps. 

This is achieved by counting only the starts (false to true transitions) of the signals. When 

the enumeration is over, the algorithm divides the number of signals by the length of the 

database (𝐿𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒 = 𝐵2) to get the current signal ratio. It then compares the signal 

threshold (𝑆𝑇) to this current signal ratio. If the current ratio is higher than 𝑆𝑇, the number 

of signals is considered abnormal, and the frequent signals condition is set to true, 

otherwise it is set to false. 

Too high age power 

AP_MAX = WS_MIN = anomaly_flapping or frequent_signals 

As discussed in Section 5.3.1, when 𝐴𝑃 and 𝑊𝑆 are changed in opposite 

directions have similar effects. So much so, that their extreme values can be detected 

using the same set of criteria. The too large AGE_POWER (if nothing else changed) 

results in fewer data points taken into consideration, thus producing anomaly flapping 

and too frequent signals. Therefore, AP_MAX returns the same logical value as WS_MIN 

(see the section entitled ‘Too small window’).  
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Too small age power 

AP_MIN = WS_MAX or AP < 1 = long_anomalies or AP < 1 

Similarly, when the AGE_POWER is too small, many older data points will have 

an effect on the algorithm, reducing the slope of the 𝐴𝐴𝑅𝐸𝑦 curve, and thus the speed of 

anomaly detection. This can be observed by searching for too long anomalies. 

An additional condition is introduced to AP_MIN compared to WS_MAX (see 

the section entitled ‘Too large window’), 𝐴𝑃 < 1. This is done in order to prevent 𝐴𝑃 

values falling to extreme low values even if the WINDOW_SIZE needs to be reduced 

(see Step 3 – adjusting the window). 
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6 Experiments 

In this section, we present our experiments comparing different settings of ReRe 

and Alter-Re2, and present the experimental parameters and setup used. This is then 

followed by the evaluation of the automated 𝑊𝑆 and 𝐴𝑃 parameter tuning algorithm 

integrated in Alter-Re2. 

6.1 Preliminaries 

The source of the datasets presented in this study is the Numenta Anomaly 

Benchmark (NAB) [17], using their publicly accessible GitHub repository [18]. NAB has 

a wide variety of different types of datasets related to computer networks and data 

traversing them or originating from them. It has flags for real anomalies to help evaluate 

real-time anomaly detection algorithms. 

To set ReRe parameters, we started with values recommended and used in the 

original paper [2]. This means having one hidden LSTM layer and setting the number of 

neurons to 10 within it. This proved to be insufficient, as the neural network model was 

making unreasonable predictions due to not being able to learn data patterns with enough 

complexity at the beginning. Unfortunately, we could not compare our implementation to 

the authors’ one, as there is to this day no publicly available code of either RePAD or 

ReRe. Therefore, it is entirely possible that a slightly different way of deploying the 

LSTM model and implementing training and prediction functions might result in different 

operation. Nonetheless, we concluded that a setting of 30 neurons in the one hidden layer 

with 30 epochs produced the best results. On the one hand, increasing these numbers 

further dramatically increases training time, on the other hand, decreasing them degrades 

prediction performance. 

We conducted similar experiments to determine the value of 𝑏, the look-back 

parameter. The authors of ReRe used a very low 𝑏 = 3, that for us did not produce 

satisfying results. After experimenting with the effect of all parameters on the overall 

performance, we concluded a setting of 𝑏 = 30. Surprisingly, a higher or lower number 

sometimes introduced a constant offset between the original and predicted data points. 

As mentioned in Section 4.1.2, the predict-forward parameter is set to 𝑓 = 1 

constantly (ReRe predicts only the very next datapoint 𝑣𝑡+1̂). 
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With regard to the WINDOW_SIZE (𝑊𝑆)  parameter, we found that a too small 

value results in an unstable operation, as there are not enough data points to learn long-

term dependencies. The upper bound on 𝑊𝑆 is the storage space designated for the 

algorithm. Additionally, CPU and time constraints might also have to be considered, as 

computational difficulty and time increases with the larger number of available data 

points. For these reasons, we concluded based on experiments that 𝑊𝑆 has to be set to at 

least 500 timesteps. In the following experiments, we use the setting of 𝑊𝑆 = 1000. 

Finally, we found that the AGE_POWER (𝐴𝑃) parameter should be set to 

approximately 2, resulting in a quadratic ageing equation. If 𝐴𝑃 is significantly lower, 

old data points have a strong influence on the current 𝐴𝐴𝑅𝐸𝑡 value, which is undesirable. 

On the contrary, if 𝐴𝑃 is much higher than 2, only the very few last data points have any 

effect on the algorithm’s performance, which results in unstable operation. In the 

following experiments, we use the setting of 𝐴𝑃 = 2. 

As we were working with offline datasets, we did not have to implement real-time 

normalization of data points (more discussion on this aspect can be found in Section 8). 

Since LSTM models require the training and prediction data to fall between 0 and 1 for 

appropriate operation, we simply divided the whole dataset by the value of the largest 

data point. 

All figures presented in the following three experiment sections (Section 6.2, 

Section 6.3 and Section 6.4) have the same layout. They consist of three graphs that show 

the details of ReRe in operation. The top graph shows the original data points (𝑣𝑦) in 

green, and the LSTM-predicted data points (𝑣�̂�) in red. Recall, that the original and 

predicted values have been scaled down to the [0, 1] interval for the LSTM model to 

work. In the middle graph, we draw the curves of the absolute average relative error 

(𝐴𝐴𝑅𝐸𝑦) in blue and the threshold (𝑡ℎ𝑑𝑦) in yellow. The bottom figure displays 

detections made by ReRe. Anomaly detections are drawn in purple, while pattern changes 

have a turquoise colour. As a reminder, when the 𝐴𝐴𝑅𝐸𝑦 value gets higher than the 𝑡ℎ𝑑𝑦 

value, ReRe determines whether there is a pattern change or an anomaly (always one of 

these, but never both). For more information on ReRe operation, refer to Section 4. 

The settings of WINDOW_SIZE (𝑊𝑆) and AGE_POWER (𝐴𝑃) are shown in the 

captions underneath the figures, alongside with the dataset name and flagged anomalies 

(anomalies confirmed by the collector of the dataset). 
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6.2 Reference Measurement 

The aim of this experiment is to prove that the original ReRe algorithm is capable 

of detecting anomalies. The dataset used here shows CPU utilization percentages from an 

Amazon Web Services (AWS) server. The results are depicted in Figure 6-1. 

 
Figure 6-1: ReRe output for ec2_cpu_utilization_825cc2.csv (no ageing, no window). 

Flagged anomalies at timesteps 1627, 1769. 

The second anomaly at timestep 1769 is detected by ReRe as the bottom graph 

displays. The middle graph shows that ReRe needs a few timesteps for the 𝐴𝐴𝑅𝐸 curve 

to rise enough to cross the 𝑡ℎ𝑑 curve and begin the detection process. After the original 

data rises again at around timestep 1900, ReRe detects a second pattern change and 

retrains the LSTM model with the new data to adjust to the new pattern. 

However, the first anomaly at timestep 1627 is not detected, since it is only a few 

timesteps long, and the 𝐴𝐴𝑅𝐸 curve does not have the time to rise enough to cross 𝑡ℎ𝑑 

values. This is due to the arrival of new normal data points that mitigate the increase of 
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𝐴𝐴𝑅𝐸 values. Nonetheless, ReRe is able to perform anomaly detection when the anomaly 

persists for a few timesteps, thus confirming the claims of its developers. 

6.3 ReRe vs. Alter-Re2 

In this experiment, our goal is to show the benefits of Alter-Re2 compared to the 

original design of ReRe in two experiments. Both datasets used here show CPU utilization 

percentages collected from AWS servers using the CloudWatch monitoring tool. 

 

 
Figure 6-2: ReRe output for ec2_cpu_utilization_ac20cd.csv (no ageing, no window). 

Flagged anomalies at timesteps 421, 3576. 

Figure 6-2 and Figure 6-3 depict the different detection results of ReRe and Alter-

Re2, respectively. The first flagged anomaly is detected by both algorithms for similar 

reasons, as discussed in the previous experiment (see Section 6.2). 



 37 

 
Figure 6-3: Alter-Re2 output for ec2_cpu_utilization_ac20cd.csv (AP: 2, WS: 1000). 

Flagged anomalies at timesteps 421, 3576. 

However, the middle graph in Figure 6-2 indicates the shortcomings of ReRe. 

After the detection of the first anomaly, 𝑡ℎ𝑑 values rise significantly as they are calculated 

using the average and standard deviation of 𝐴𝐴𝑅𝐸 values. Additionally, as the second 

anomaly comes at timestep 3576, a lot of data points have been collected, and the issue 

(the slope of the 𝐴𝐴𝑅𝐸 curve is much lower) arises. These two issues combine in such a 

way that the anomaly goes entirely undetected. 

Alter-Re2, on the other hand, solves both issues and detects the second anomaly 

as well, shown in Figure 6-3. The 𝑡ℎ𝑑 curve resets between timesteps 1500 and 2500 due 

to the use of sliding window, allowing much more precise detection. The slope of the 

𝐴𝐴𝑅𝐸 curve increases dramatically (although admittedly it is hard to spot in the figure), 

thanks to the implemented ageing. 
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The superiority of Alter-Re2 over ReRe can be examined further by contrasting 

Figure 6-4 and Figure 6-5. Here, both anomalies last only for a few timesteps (the two 

spikes with the highest amplitude). 

Figure 6-4 shows the operation of the original ReRe algorithm. As anomalies are 

only detectable for a few timesteps, AARE values barely reflect the anomalous behaviour. 

For this reason, ReRe does not detect either of them. 

There is another issue visible in Figure 6-4. Namely, there is an almost constant 

offset between the averages of the predicted values and the original ones. This offset is 

present in most of the other experiments’ figures as well, at least in part, though perhaps 

it is most visible here. This offset is due to the slightly abnormal training data the LSTM 

model learned from the data patterns. We discuss how to mitigate this issue in Section 8. 

 
Figure 6-4: ReRe output for ec2_cpu_utilization_5f5533.csv (no ageing, no window). 

Flagged anomalies at timesteps 1272, 2931. 
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Figure 6-5: Alter-Re2 output for ec2_cpu_utilization_5f5533.csv (AP: 2, WS: 1000). 

Flagged anomalies at timesteps 1272, 2931. 

In contrast with Figure 6-4, Figure 6-5 depicts that Alter-Re2 successfully detected 

both anomalies. This is partly because of the adjustment of the 𝑡ℎ𝑑 curve to the 𝐴𝐴𝑅𝐸 at 

around timestep 1040. The 𝑡ℎ𝑑 curve does this as the sliding window (of size 1000) leaves 

behind the usually high error timesteps at the beginning that are a result of the training 

phase of ReRe. The original algorithm never gets rid of these terms, and always takes 

them into account with the same weight as the newest timestep. Alter-Re2, on the contrary, 

throws these terms away after a 𝑊𝑆 number of timesteps. 

Ageing is another important upgrade to ReRe. It allows even the shortest length 

anomalies (only present for a few timesteps) to be detected, as it places greater emphasis 

on newly arrived data than older points. This way, the 𝐴𝐴𝑅𝐸 curve rises swiftly enough 

to cross the 𝑡ℎ𝑑 curve and initiate the detection process. We argue that Alter-Re2, our 

approach to address the limitations present in ReRe, is able to significantly increase the 

detection precision of the original algorithm. 
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Apart from the ones shown in this section, we performed numerous further 

experiments to compare the performance of ReRe and Alter-Re2, using a wide variety of 

datasets. Ten datasets were from the type of data shown in this section (for more 

discussion on data types, see Section 7). These record various sources of information 

including CPU utilization, request latency, request count, and other network-related 

measurements. We downloaded all datasets from the NAB GitHub repository [18]. 

In these ten, similar type of datasets, Alter-Re2 found 10 anomalies in total (this 

is the number of true positives), while ReRe managed to detect only 3. This three-fold 

increase in the number of true positives indicates that Alter-Re2, implementing even only 

relatively simple extensions, can substantially overperform ReRe, at least in case of 

certain dataset types. With regard to false positives (the number of signalled anomalies 

that are not flagged to be true), Ater-Re2 detected only 4 anomalies (these came from only 

two datasets), while ReRe found only 1. We believe that these results prove the relevance 

of our improvements. 
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6.4 Performance Maintenance through Different Data Types 

The goal of this experiment is to shed light on the operation of Alter-Re2 on 

different kinds of datasets. So far, all previous experiments were performed on one certain 

type of data that ReRe was likely designed to perform well on. Here, we present two 

fundamentally different datasets and evaluate Alter-Re2 on them. For a detailed 

discussion on the results presented in this section, please refer to Section 7. 

The first dataset, depicted in Figure 6-6, shows machine temperature data. There 

are four anomalies according to the source of the data, the Numenta Anomaly Benchmark. 

These are extreme rises or drops in the temperature measured by the sensor. Alter-Re2, 

however, is unable to detect either one of the four.  

 
Figure 6-6: Alter-Re2 output for machine_temperature_system_failure.csv 

(AP: 2, WS: 1000). Flagged anomalies at timesteps 2410, 3987, 16341, 19516. 

The reason is, on one hand, that these anomalies do not have such a steep slope as 

in the previous datasets, so our algorithm simply declares a pattern change, the previous 
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few data points will not be that significantly different from the currently processed one. 

On the other hand, the previously mentioned constant offset is present here as well, which 

negatively impacts detection, as errors do not differ that much from normal behaviour. It 

starts at the first pattern change detection and lasts until the next one. The reason is the 

abnormal data points right before the first pattern change, since our algorithm retrains the 

LSTM model with those, and thus learns slightly wrong patterns (see Section 8). 

The second dataset (shown in Figure 6-7) also shows CPU utilization data from 

an AWS server. The only difference from the dataset used in Section 6.3 is that correct 

behaviour here is a periodic spike in the data with the same amplitude. Therefore, 

abnormal data here means out-of-period or different amplitude spikes. Our algorithm is 

unable to detect these anomalies, as even if it signalled the individual spikes (as it 

sometimes did on similar datasets), these would not be correctly identified anomalies. 

 
Figure 6-7: Alter-Re2 output for ec2_cpu_utilization_24ae8d.csv (AP: 2, WS: 1000). 

Flagged anomalies at timesteps 3548, 3778. 
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6.5 Evaluation of automated hyperparameter tuning 

In this section, we present our observations on Alter-Re2 with automated 

parameter tuning turned on. We evaluate the efficacy hyperparameter tuning using two 

datasets. Specifically, we show the adjustment steps and criteria described in Section 5.3, 

Figures Figure 6-8 and Figure 6-9  have a slightly different layout to those in Section 6.1 

to 6.4. Although the top diagram still shows the original and predicted values, anomaly 

and pattern change signals have been moved up directly below that. The third diagram 

records WINDOW_SIZE and AGE_POWER values, as these parameters are modified by 

the algorithm. Lastly, at the bottom, we show the results of evaluating the three detection 

criteria (see Section 5.3.3). The source of the datasets is NAB [18] as previously, and 

Alter-Re2 parameters are set to the same values of 𝐵 = 30, 30 neurons, 30 hidden units. 

 
Figure 6-8: Alter-Re2 output for rds_cpu_utilization_e47b3b.csv (AP: auto, WS: auto). 

Flagged anomalies at timesteps 947, 2586. 
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The first experiment, displayed in Figure 6-8, clearly demonstrates the operational 

principles discussed in Section 5.3. Alter-Re2 starts with the default values of 𝑊𝑆 = 150 

and 𝐴𝑃 = 1. The initial check whether to increase the window returns false, as there have 

been no anomalies signalled up to that point. At around timestep 600, Alter-Re2 reports 

a false anomaly, then, at 947, it signals a one. At about 1000 timesteps, the algorithm 

checks the conditions, and finds no errors, as the two anomaly signals are not frequent 

enough compared to the average change in the data. After the second check, however, 

frequent signalling is noticed, and the AGE_POWER is lowered to give way to more 

datapoints (i.e., a larger area under the 𝐶𝑦 curve). The following checks also return 

positive due to the introduction of another false alarm, and some pattern changes, but 𝐴𝑃 

is not lowered further because of the condition 𝐴𝑃 < 1, to prevent complete disabling of 

ageing. Before 2000, the window size is tested again, and Alter-Re2 can then resolve the 

frequent signalling issue by increasing 𝑊𝑆 and 𝐴𝑃. As it persists, it decreases 𝐴𝑃 

incrementally, and increases 𝑊𝑆 once again. During this, it signals another correct 

anomaly at timestep 2586. After all these adjustments, the parameters are set to correct 

values, as indicated by the fact that no check for extreme parameter values returns 

positive. Our experiments on the appropriate values for these parameters also suggested 

an 𝐴𝑃 value close to 2, and a 𝑊𝑆 value close to 1000 (in fact, these are the parameters 

used in the above experiment sections). This proves that in a few thousand timesteps, 

Alter-Re2 is capable of adjusting the WINDOW_SIZE and AGE_POWER parameters to 

values enabling further precise detection. 

The second experiment results are displayed in Figure 6-9. Just like in the previous 

one, the default values are set, and the initial checks return negative, as no signal was 

raised previously. When the first anomaly occurs in the dataset at timestep 421, Alter-

Re2 signals it immediately, but with a frequent state change. This behaviour is noticed by 

the first check at around 1000 timesteps, that determines that both the anomaly flapping 

and frequent signalling conditions are true. Consequently, Alter-Re2 increases 𝑊𝑆 and 

𝐴𝑃. Since the window size is only checked and adjusted four times less frequently as 𝐴𝑃, 

the next check allows the fine tuning of the AGE_POWER parameter. It is lowered by 

25% due to the same conditions present at the previous check. After this timestep, the 

algorithm operates normally, only signalling a few pattern changes that are not considered 

too frequent by the algorithm due to the changes from timestep to timestep in the original 

data (see Section 5.3.3). When the second anomaly occurs in the original dataset, Alter-
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Re2 signals it immediately. The last condition check shown in Figure 6-9 returns the 

frequent signalling criterion to be true. This is a result of the change in the pattern of the 

data at the second anomaly, as original values afterwards change much less between 

timesteps. This results in a smaller signal threshold, that no longer accepts the signals 

raised previously, and triggers the decrease of the 𝐴𝑃 parameter. As with the previous 

one, this experiment validates the designed algorithm for automatic parameter tuning.  

 
Figure 6-9: Alter-Re2 output for ec2_cpu_utilization_ac20cd.csv (AP: auto, WS: auto). 

Flagged anomalies at timesteps 421, 3576. 

In general, by analysing a few dozen more experiments, we conclude that the 

automated tuning algorithm choses appropriate WINDOW_SIZE and AGE_POWER 

values for the type of data patterns shown in Section 6.3 (the same applies here about data 

patterns as discussed in Section 7). Although it yields a few false positive detections at 

the beginning, after approximately 2000 to 4000 timesteps, the parameter values 

stabilize, and major changes only occur with a change in the original data. 
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7 Discussion 

In this section, first we comment on false positives produced by RePAD and the 

necessity of ReRe. Then we discuss the results of the experiments in this section. Finally, 

we present our detailed discussion on the types of data ReRe and Alter-Re2 can perform 

well on. We also show other data patterns that are significantly harder to optimize for 

using these approaches strictly. 

The purpose of ReRe, according to its authors, is to eliminate false positive 

anomaly detections (when the algorithm signals an anomaly, but there is no abnormal 

behaviour in reality) produced by RePAD. Yet, in our implementation, we did not 

perceive an excessive number of false positives. On the contrary, our experiments showed 

that RePAD failed to identify certain anomalies (false negative). As ReRe employs a 

second detector that can only disable anomalies detected by detector 1 (i.e., RePAD), 

ReRe cannot detect more anomalies than RePAD, only less or the same. For these reasons, 

we did not find a significant benefit of using ReRe instead of RePAD. 

To understand how ReRe behaves on different datasets, first, we have to create 

categories of types of data. In our classification of certain patterns of data, we consider 

two main properties; what kind of pattern signals normal and abnormal behaviour. On 

this basis, we identified three main categories in the available datasets. 

The first one has an almost constant average with data values appearing within a 

band around the average. Here, anomalies occur when there is a large spike in the data or 

a sudden and quick shift in the average. This is the type of data ReRe, and its improvement 

operates properly on. Experiments in Sections 6.2 and 6.3 all deal with this data pattern. 

The ‘look-back, predict-forward’ approach is ideal for the type even with a small look-

back parameter (𝑏), as even a small number of training and predicting data will be 

sufficient for the LSTM model to infer the basic pattern from. 

The second category of data types shows only activity at regular intervals. When 

working normally, periodic spikes are registered in the data. This might come from a 

periodic message processed or any other task that requires repetition after a preset time 

interval. Bytes written on or read from disks often fall into this category with network 

devices, as for most timesteps disks may be in the idle state. Anomalies here are aperiodic 

spikes, a longer width of the spikes, a different amplitude, or in essence every type of 

behaviour that differs from the periodic spikes with the same amplitudes. Figure 6-7 in 
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the third experiment shows exactly this kind of data. We believe ReRe is unable to detect 

these kinds of anomalies, as it is not prepared to deal with periodicity in any form. Even 

if we increase the look-back parameter 𝑏, the improved ReRe produces inconsistent and 

unreliable results. We conclude that this might be a consequence of the fundamental 

design of the algorithm. 

The third and last type of data we have analysed is more similar to the first 

category (data with an almost constant average) but deviates from it in one significant 

aspect. With this type, normal behaviour is not constant; rather, data points rise and fall 

within acceptable limits and with an acceptable slope. When an anomaly occurs, it is most 

likely due to an extremely high or low value, or a very sudden change. We found that this 

type of data is mostly the output of temperature sensors, such as the first dataset in the 

third experiment in Section 6.4. Our experiments with such data patterns show that ReRe 

and its improvement are sometimes able to detect the most obvious and extreme 

anomalies, but they almost always mistake less striking ones for pattern changes or do 

not detect them at all. Measurement errors of these sensors make this task even harder, as 

data can fluctuate even if the temperature is not changing. Ultimately, the ability of our 

algorithm to detect these kinds of anomalies depends on the complexity of patterns the 

LSTM model can learn. Yet, increasing this would mean an increase in the number of 

neurons, epochs and the look-back parameter 𝑏, which are deliberately kept low to enable 

real-time use. 

In conclusion, we would have to make fundamental changes to ReRe to enable 

the detection of these different kinds of anomalies, as it is originally best suited only for 

the first category of data types. Perhaps an intelligent detector built into the system could 

infer in the first few hundred timesteps which kind of data it is receiving and could then 

select the algorithm suited best or tune its parameters for the type. It could then monitor 

the data during the operation and choose a different algorithm or retune the parameters if 

necessary. Nonetheless, we have to conclude that the accuracy of ReRe is data type-

dependent, still, with our improvements, though Alter-Re2 produces convincing results in 

the domain it was designed for.  
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8 Research Implications 

In this section, we briefly elaborate on our work’s implications and some of the 

directions for future research that stem from the analysis. Our ultimate goal is developing 

an anomaly detection algorithm that operates in real time on multivariate data embedded 

within a complex tool designed for network administrators. 

As seen in most of the figures in Section 6 to a varying degree, and specifically 

mentioned in connection with Figure 6-4 and Figure 6-6, sometimes there is a constant 

offset between the predicted and original data values. Discussing Figure 6-6, we 

mentioned that this offset is the consequence of LSTM models being trained on slightly 

abnormal data that does not represent the whole dataset properly. In Figure 6-6, there are 

multiple pattern changes signalled by ReRe. Recall that then and only then is the LSTM 

model retrained. Looking at the figure, it is clear that if a pattern change is signalled at 

the right time, the offset is eliminated thanks to the normal and representative training 

data. Observing all figures of the experiments in Section 6 we can confirm this. Based on 

this finding, we plan to include an offset compensation component in the detection 

algorithm. It will observe the difference of the averages of the predicted and original 

values (|𝑎𝑣𝑔(𝑣𝑦) − 𝑎𝑣𝑔(𝑣�̂�)|), and if it notices a too high permanent difference, it will 

trigger an LSTM retrain with the last few data points. 

Another indeterministic issue in our experiments was an excessive number of 

pattern changes. This results in many LSTM model retrains that are resource-intensive 

and time-consuming. To address this shortcoming, we plan to introduce a component that 

can modify the coefficient of 𝜎𝐴𝐴𝑅𝐸𝑡 that is currently set to 3. Through this, it is possible 

to modify the 𝑡ℎ𝑑 curve to have larger values, thus detecting fewer pattern changes. 

We also plan to automate further hyperparameters of Alter-Re2 in a similar 

approach as we did with the AGE_POWER and WINDOW_SIZE parameters. As we 

introduce new extensions of the algorithm, the usefulness of this automation will increase. 

Thus, we plan to enable setting as many parameters automatically as possible, based on 

the properties of the dataset. 

In order for this algorithm to work in real-time applications, there are a few 

problems that need to be solved. As ReRe is in principle capable of online detection of 
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streaming data3, data preparation is the key area to focus on. More specifically, ReRe 

requires the input data to be scaled down and fall between 0 and 1. This has to be done 

in real time without knowing the boundaries of the input data. In some scenarios, we can 

make predictions on what is the possible highest and lowest input value we can observe 

(e.g., a CPU utilization percentage will be between 0 and 100), but if we strive for a 

general solution, this is not a viable option. All in all, we have to incorporate real-time 

normalization of the input data into Alter-Re2. We also have to adapt our implementation 

that currently works on offline datasets to manage the real-time receipt of input data. 

Since we plan to deploy the algorithm as an anomaly detector for streaming 

telemetry data, we will have to solve the issue of multivariate data. A network device can 

produce a wide range of operational information. To find patterns of abnormal behaviour, 

we have to analyse multiple variables in real-time. Although ReRe was designed to run 

on univariate data, the LSTM model and its functions can handle extra dimensions. The 

only issue arises at signalling an anomaly. In future, we plan to devise a method to decide 

when to signal a collective anomaly based on the individual signals of variables. This 

may require domain knowledge, and specifically tuning the system for an application. 

Finally, we briefly mention the issue of evaluating anomaly detection algorithms. 

The main reason for the complexity of this task comes from the very small frequency of 

anomalies compared to the frequency of normal data points. Depending on the 

application, there might also be different aspects that are more important than others. For 

example, one use case might prioritize the speed of anomaly detection, while another 

might place more emphasis on how many anomalies go unnoticed. The cost of a false 

positive or a false negative might also have to be considered. There are multiple metrics 

used in literature, such as precision ( # 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
# 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑎𝑛𝑑 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

), recall (# 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
# 𝑜𝑓 𝑎𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠

) 

and many other fractions, curves and diagrams. A possible solution is to create an 

aggregated metric that consists of application-specific variables and calculations.  

Given that ageing and the sliding window mechanism can already introduce 

improvements in anomaly detection (as demonstrated in Section 6), it is very likely that 

incorporating the above discussed concepts can lead to further advances. 

 

3 This only depends on the capabilities of the machine it is deployed on and parameter settings. 
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9 Conclusions 

Real-time anomaly detection in time-series data is an emerging area with 

approaches mostly based on neural networks, and increasingly often LSTMs. We 

surveyed state-of-the-art solutions and selected an LSTM-based real-time anomaly 

detection algorithm called ReRe. 

We evaluated the selected method and found its performance limitations. 

Motivated by this fact, we developed Alter-Re2, an anomaly detection algorithm that 

seems to overperform ReRe. It provides a sliding window to limit memory and CPU stress 

below an upper bound. Furthermore, Alter-Re2 implements also a mechanism for ageing 

of the data points, used for calculating error terms, to solve the issue of slow (or no) 

reaction to anomalies. We also introduced an algorithm capable of automating the tuning 

of the AGE_POWER and WINDOW_SIZE hyperparameters. 

We rigorously evaluated Alter-Re2 in several different scenarios. Our approach, 

implementing even only relatively simple extensions, achieved significantly better 

performance compared to ReRe in the investigated scenarios, detecting three times as 

many anomalies. Our algorithm showed reliable performance even in cases when ReRe 

fell short of detecting certain anomalies. We conclude that our automated parameter 

adjustment method has met our goals and can tune the values to a high accuracy. 

Furthermore, we examined also how Alter-Re2 performed on various types of data 

and drew conclusions for each category we divided data types into. We found that Alter-

Re2 worked appropriately only on data with an almost constant average as normal 

behaviour, nonetheless always overperforming ReRe. Other types of data require further 

investigation. In conclusion, our observations support the feasibility of our approach. 

In future work, we plan to evaluate the applicability and usefulness of several 

other concepts. Our goals include offset compensation, adaptive threshold sigma-

coefficient setting, automated tuning of further hyperparameters, real-time normalization, 

and multivariate data support. 

As time-series data streams are now an integral part of almost every field of 

technology, the important tool of real-time anomaly detection deserves more attention. 

We are certain, that our contribution is valuable in facilitating the development of relevant 

techniques, yet we argue our approach has immediate real-world applicability as well.  
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12 Acronyms 

AARE  Average Absolute Relative Error 

ADT AnomalyDetectionTs 

ADV AnomalyDetectionVec 

AP  Age Power parameter 

AWS  Amazon Web Services 

BGP Border Gateway Protocol 

eSNN evolving Spiking Neural Networks 

HTM Hierarchical Temporal Memory 

LSTM  Long Short-Term Memory 

NAB  Numenta Anomaly Benchmark 

RePAD Real-Time Proactive Anomaly Detection for Time Series 

ReRe A Lightweight Real-time Ready-to-Go Anomaly Detection 

Approach for Time Series 

RNN  Recurrent Neural Network 

thd  detection threshold 

𝑾𝑺  Window Size parameter 

𝑨𝑷  Age Power parameter 

𝑺𝑻  Signal Threshold ratio 
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