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Kivonat 

A modern technológiának köszönhetően, manapság már az egészségügyben is 

lehetséges hatalmas mennyiségű adatot generálni és gyűjteni. Mivel a gépi tanulási 

módszerek hatékonynak bizonyultak a komplex adatokban rejlő minták és kapcsolatok 

felismerésében, fontos szerepet játszhatnak a klinikai döntés-támogatásban is. A 

szívtranszplantációs műtét utáni túlélés esélyeit számos tényező befolyásolhatja, így 

fontos és hasznos lehet a betegek különböző adatai alapján az állapotukra vonatkozó 

előrejelzéseket tenni. A projekthez rendelkezésre álló orvosi adatszett a betegek 

különböző időpontokban vett artériás vérgáz paraméterinek méréseit tartalmazta, mind a 

szívtranszplantáció előtt és után. A mért paraméterek idősoros adatait először is meg 

kellett tisztítani és aggregálni, hogy különböző adatbányászati technikákkal elemezni 

lehessen. A főbb megállapítások szerint a paraméterek között kimutathatók lineáris és 

nem lineáris összefüggések, illetve a vérgáz mérések változásában is szignifikáns 

különbségek mutatkoznak a különböző túlélési idejű betegek között. Lineáris regresszió, 

döntési fa alapú, idősoros és neurális háló alapú modellek készültek különböző 

problémákra, hogy kiderüljön milyen típusú modelleket és kérdéseket érdemes tovább 

vizsgálni. A fő következtetés az, hogy a paraméterek előre jelezhetők egymásból 

többváltozós többrétegű perceptron (MLP) modellekkel, 0.0015-0.0025 közötti átlagos 

RMSE (root mean square error) és 1% alatti átlagos MAPE (mean absolute percentage 

error) mellett. A feature importance vizsgálat alapján, egyik paramétert sem szabad 

kizárni az előrejelzésből.  Továbbá, a vérgáz paraméterek időben nagyobb távra is előre 

jelezhetők hasonlóan alacsony átlagos hibákkal. Teljesen ismeretlen betegek esetében, 

más betegek adatai alapján ugyan kisebb pontossággal, viszont anélkül lehet 

előrejelzéseket tenni, hogy a prediktált értékek tévesen esnének a normál referencia-

intervallumba. A létrehozott előre jelző modellek csökkenthetik az ABG-vizsgálatok 

gyakoriságát, ezáltal a költségeket is. Az orvosok tájékozódhatnának a várható 

tendenciákról, valamint észlelhetnék az esetlegesen bekövetkező életveszélyes 

állapotokat is. 
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Abstract 

Thanks to modern technology, it is possible to generate and collect large amounts 

of data in healthcare too. As machine learning methods proved to be efficient in 

recognizing patterns and connections in complex data, they can play an important role in 

supporting the clinical decision making. Many factors are influencing the postoperative 

survival of heart transplant patients, so basing predictions on different kinds of data about 

the patients’ condition can be important and helpful. The clinical dataset given for this 

project contains measurements of arterial blood gas parameters taken at different times 

from patients before and after the heart transplantation. The time-series data was first 

cleaned and aggregated, then it was analyzed with different data mining techniques. 

According to the key findings, linear and non-linear relationships can be shown among 

the parameters, and significant differences in change of blood gas measurements between 

patients with different survival length. Linear regression, tree-based, time-series, and 

neural network baseline models were created for different problems to see, which type of 

models and questions are worth to examine further. The main conclusion is that 

parameters can be predicted from each other using multivariate multilayer perceptron 

(MLP) models with average RMSEs (root mean square error) between 0.0015-0.0025 and 

average MAPEs (mean absolute percentage error) under 1%. Based on the feature 

importance examination, none of the parameters should be excluded from prediction.  In 

addition, it is possible to predict blood gas parameters further in time with similarly low 

average errors. Blood gas parameters can be predicted for completely unknown patients 

based only on other patients as well, although with less accuracy, but without making 

predictions that would falsely considered to be in the normal reference-interval. The 

resulting predictive models could reduce the frequency of ABG testing and this way its 

costs as well. Clinicians could gain insights to expected trends and detect possible life-

threatening conditions too. 
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1 Introduction 

As nowadays large amounts of data are being generated and collected in 

healthcare too, data mining opportunities continuously arise in the industry. Machine 

learning methods are widely used in healthcare, because they proved to be effective in 

understanding patterns and finding correlations from massive and complex data. The 

insights offered by the application of data mining can play an important role in supporting 

clinical decision making. 

The first example of human heart transplantation happened more than 50 years 

ago, and nowadays heart transplantation is considered as the gold-standard treatment for 

patients who have end-stage heart failure. Although there has been significant progress 

made regarding this life-saving operation, the success of the transplantation is still 

severely restricted due to numerous factors [1]. Furthermore, till 2017 there was no 

generally accepted risk-prediction model for prognosis after heart transplantation [2], and 

after researching more recent studies still none was found. Because of all the factors 

influencing the posttransplant survival, it can be an important task to make predictions 

based on different type of data about the patients’ condition, or even survival. 

 This report begins with a brief overview of the challenges in heart transplantation 

and arterial blood gas parameter prediction. After getting to know the biological 

background of the project, the goals of data mining along with its process are discussed. 

Since data mining uses many statistical and machine learning techniques, these are also 

described, putting the emphasis on regression and neural network models. After 

understanding the technologies related to the project, some related studies about similar 

tasks or technologies are introduced. The description of the performed work starts with 

the introduction of the dataset and continues with the cleaning and preparation of data. 

Then the main discoveries of the Exploratory Data Analysis and the application of the 

algorithms are presented. After explaining the process of modelling and the created 

different baseline models, the performance of some models is evaluated and compared. 

Based on this, the best models or more important questions are further investigated with 

a new evaluation approach, different training, hyper-parameter optimization and feature 

importance examination. Finally, the results are examined to draw conclusions and 
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identify opportunities for further improvement. The report ends with summarizing the 

main results, the additional conclusions, and possible further directions of the project. 
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2 Heart transplantation and blood gas analysis 

2.1 Challenges in human heart transplantation 

More than 50 years have passed since Dr. Christiaan Barnard performed the first 

human-to-human heart transplantation in South Africa. The initial optimism around heart 

transplantation (HTx) quickly disappeared, when it turned out that the survival usually 

only lasted for days or weeks. Fortunately, during the next two decades the survival period 

has significantly improved, thanks to applying more carefulness in donor and recipient 

selection, better donor heart management and the use of cyclosporine as the main agent 

for immunosuppression [1]. 

By 2014, the one-year survival after HTx was around 90%, which is a great 

achievement compared to 30% in the 1970s. However, the long-term outcomes have not 

changed much, and there are many serious challenges in the field. One reason of new 

challenges the transplant clinicians are facing is the changing demographics of heart 

recipients. A greater part of patients in their sixties and seventies are being transplanted, 

who have higher risks of infection and cardiac allograft vasculopathy. The advances in 

heart surgery also led to younger patients to survive growing up with congenital heart 

disease and develop heart failure later in their life. These patients usually have higher 

risks of arterial bleeding and mortality [3]. Other challenges of HTx include the harmful 

effects of immunosuppression, which aims at preventing or treating the rejection while at 

the same time minimizing the risk of infection or cancer. In fact, the success of HTx has 

been closely related to the discovery of effective immunosuppressive treatments [1]. 

There are still many unanswered questions regarding immunosuppression, not to mention 

chronic rejection, antibody-mediated rejection or malignancy [3]. 

2.2 Arterial blood gas test 

The measurements of blood gas along with other monitoring techniques provide 

information to the clinician is crucial in assessing patients, therapeutic decision making 

and prognostication [4]. 

Arterial blood gas (ABG) tests are blood tests performed by using blood from the 

artery. An ABG test is used to assess gas exchange in patients with respiratory disorders, 

to acquire patients’ acid-base status, and it is one of the most commonly performed tests 
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in intensive care units (ICUs). Furthermore, it has numerous applications in other 

medicine related areas as well. The ABG test reports the pH of the blood, the partial 

pressure of carbon dioxide and oxygen, the bicarbonate level and many analysers also 

include concentrations of lactate, haemoglobin, several electrolytes, oxyhaemoglobin, 

carboxyhaemoglobin, and methaemoglobin [5]. The ABG test is not only expensive but 

also stressful for the subject to carry out, thus the frequency of testing should be reduced 

by relying on previous results. 

2.3 Blood gas parameter prediction 

Prediction of future values for blood gas parameters would lead to better planning 

regarding treatment. Besides, having information about expected trends, the clinicians 

might be able to prevent life-threatening changes in values as well. Unfortunately, the 

prediction of blood gas parameters is usually a very difficult and complex task. 

The complexity can arise from the sudden changes in measured values, especially 

regarding new-borns [4]. Another issue is that every patient has their own personal 

dynamics of biochemical processes in the arterial blood, which can be changing during a 

healing process [5]. 

However, there is great need for precise and rapid predictions in the area. The 

limited resources of ICUs need efficient management, especially when external stressors, 

like a pandemic increases patient numbers [6]. Laboratory testing occurs frequently for 

patients in intensive care, and part of the tests are only run by default without reflecting 

changes about the critical status of ICU patients. Using blood test excessively also 

increases resource utilization, contributes to blood loss, can lead to incorrect diagnosis 

[7]. ABG tests are globally standardized in ICUs and obtained relatively frequently as 

well, thus ABG test parameters can be used to develop predictive tools on. Machine 

learning can be used for the prediction making and this way also in optimizing the 

allocation of resources. In addition, machine learning methods which inherently integrate 

a large amount of data, can also play an important role in supporting clinical decision 

making [6]. 
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3 Data mining 

Nowadays huge amounts of data are collected from almost every aspect of our 

lives daily. The medical and health industry is not an exception either, it can generate 

enormous amounts of data as well, for example from medical records. The need to gain 

valuable information from this vast amount of data led to the birth of data mining [8]. 

3.1 Process of data mining 

The definition of data mining is discovering interesting and useful patterns and 

relationships in data. The goal of data mining can vary, for example it can be used to 

generate insightful and understandable reports to end users [10]. There are two types of 

goals in general: in verification, the system is used to verify the user’s hypothesis, while 

in discovery, the system is used to find new patterns. Discovery can be further divided 

into two categories, prediction, and description. Prediction means finding patterns in 

order to predict future behaviour of certain entities, while description means finding 

patterns for presenting them to users in a form, they can understand [9]. 

In terms of the CRISP-DM (CRoss Industry Standard Process for Data Mining) 

project, a process model was defined providing a framework for data mining projects, so 

the projects would not depend highly on a particular person or team, as before. The 

CRISP-DM process model can be used in any industry and with any technology to make 

the data mining project less expensive, more reliable and faster as well. The CRISP-DM 

reference model for data mining consists of six phases. The process begins with defining 

a data mining problem and designing a preliminary project plan. After that, initial data is 

collected, data quality problems and first insights are identified. Understanding initial 

data is also necessary for business understanding, so the first to phases are strongly 

connected. The third phase is about creating the final dataset for the model from raw data. 

Among other tasks, data preparation includes attribute selection, creating new attributes 

and cleaning the data. There is a strong link with the next phase because data problems 

or need for constructing new data can also be identified during modelling. In the 

modelling phase, different techniques are applied and parameterized. After building one 

or more seemingly optimal model, they are evaluated and the steps of constructing them 

are reviewed. The purpose of the evaluation phase is to make sure every important 

business issue has been considered and to decide on the use of the data mining results. In 
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the final phase, depending on the requirements, for example the results can be presented 

in a report to the end user, or a repeatable data mining process might be implemented 

[11]. 

3.2 Statistics 

3.2.1 Statistics in data mining 

Data mining integrates many techniques from statistics. According to Han et al., 

statistics studies the collection, analysis, interpretation or explanation, and presentation 

of data. Statistical models can either be the outcome of a data mining task or a data mining 

task can be built on them as well [8]. 

 Basic statistical descriptions, such as measures of central tendency (mean, 

median and mode) and dispersion measures (range, quartiles, interquartile range, 

variance, and standard deviation), can summarize and give an overall picture of data [8]. 

Visualization tools like histograms, box plots or scatter plots are also useful for 

understanding the structure of data. Another widely used statistical analysis technique is 

cluster analysis, which aims at creating internally homogeneous and externally 

heterogenous clusters by organizing information about variables. How changes in one 

variable result in changes in another, can be measured with correlation analysis. The 

correlation coefficient can be useful to understand the predictive abilities of an 

independent variable. Furthermore, with regression analysis relationships between a 

dependent variable and one or more independent variable can be estimated. Some other 

Figure 1: Phases of CRISP-DM Model for Data Mining [10] 
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popular techniques include discriminant analysis, factor analysis and other types of 

regression analysis, for example logistic regression [12]. However, applying statistical 

methods on large data sets is often challenging, as many methods have high 

computational complexity and cost, so algorithms must be designed and tuned carefully 

[8]. 

3.2.2 Time series analysis 

 An important area of statistics includes methods for analyzing and modelling time 

series. A time series consists of observations, that are made sequentially in time. 

Examples to time series exist in numerous fields for example in economics, physical 

sciences, or engineering. Time series analysis can have different purposes, like obtaining 

descriptive measures, explaining properties of one time series based on another, statistical 

quality control or predicting future values. 

 The traditional time-series analysis methods focus on the decomposition of the 

variation in the series. According to Chatfield, the variation can be decomposed into four 

different kinds of components. First, seasonal effect is a periodically reoccurring 

variation, that is easily understandable. Besides seasonal effects, there can be other cyclic 

changes that are present at a fixed period, like the daily variation in temperature. Another 

component is the trend, which is a long-term change in the level of the mean. The 

definition of “long-term” here must depend on the number of observations. After 

removing cyclic variations and trend form the time-series, a series of other irregular 

fluctuations remain. Some of these irregular variations might be explained with 

probability models, like moving average or autoregressive models [13]. 

The Auto Regression (AR) model calculates the regression of past time series and 

present or future values in the series, while the Moving Average (MA) model calculates 

the errors of past time series instead of the regression. Combinations of AR and MA 

models also exist, where the effect of previous time series and errors are also taken into 

account for forecasting the future values [14]. Forecasting of the time-series can be 

univariate, which means the forecasts of a variable are based on its past observations, 

while in multivariate forecasting the variable depends (at least partly) on values of one or 

more other series. To apply any variations of ARMA models, the time-series needs to be 

stationarity. Intuitively, a time-series is considered to be stationary if there is no 
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systematic change in the mean or variance, and no strictly periodic variations are present 

[13]. 

Overall, statistical methods are applied in data mining for various reasons. 

Statistics not only helps to understand the data, but also to discover patterns and 

understand the underlying reasons affecting them. In addition, statistics plays a major role 

in developing and evaluating models, so using it in data mining is basically inevitable. 

3.3 Applied machine learning algorithms 

3.3.1 Machine learning 

“Machine learning investigates how computers can learn (or improve their 

performance) based on data” [8]. Furthermore, the purpose of machine learning is to 

automate time-consuming human activities in the knowledge engineering process with 

techniques, that can identify regularities in training data [12]. Nowadays a huge variety 

of applications take advantage of machine learning: web page ranking, collaborative 

filtering, automatic translation and face recognition, to name a few. Just like the range of 

applications, the range of machine learning problems is wide as well [15]. 

Han et al. collected some classic problems in machine learning, that are strongly 

connected to data mining [8]: 

• Supervised learning has two main categories, classification and regression. In 

order to supervise the learning of the model, labeled examples are used for training 

the classification model and continuous numerical values for the regression 

model. 

• Unsupervised learning, also known as clustering, is typically used to discover 

classes in the data. The learning is unsupervised because the training data is not 

labeled. 

• Semi-supervised learning uses labeled and unlabeled examples as well to train 

the model.  

• Active learning aims at optimizing the model quality by letting users participate 

in the learning process to gain knowledge from them. 

In the terms of this project, the machine learning problem was a supervised 

learning problem. The time-series data was used to predict future values and understand 



 15 

the relationships between blood gas parameters. Different kinds of machine learning 

models were tried including regression models, tree-based models, time-series models, 

and neural networks as well. 

3.3.2 Linear regression models 

Regression models are suitable for approximation and the simplest model is based 

on linear regression. In linear regression the data is fitted on a straight line. The response 

variable (y) can be described as a linear function of a predictor variable (x), with an 

equation 𝑦 = 𝑤𝑥 + 𝑏, where w means the slope of the line and b the y-intercept. These 

regression coefficients can be determined with the least squares method, that minimizes 

the error between the real line separating the data and the estimated line.  

An extension of linear regression is multiple linear regression, where y can be 

modelled as a linear function of more than one predictor variables [8]. In cases of 

multiple-regression models where the independent variables are highly correlated, using 

ridge regression is advised in order to reduce the effects of correlation and stabilize the 

regression coefficients [16]. 

In this project, different kinds of regression models were tried. The 

LinearRegression model fits a linear model by minimizing the residual sum of squares 

between observed and predicted targets. The BayesianRidge model is based on Bayesian 

Ridge Regression, which is a type of Bayesian regression. Bayesian regression creates 

linear regression by using probability distributors instead of point estimates with the 

response variable assumed to come from a probability distribution. BayesianRidge model 

iteratively maximizes the marginal log-likelihood for the data points [18]. 

3.3.3 Tree-based regression models 

Besides classification problems, decision trees can be used for regression tasks as 

well. A decision tree has a flowchart-like tree structure with internal nodes that contain 

tests on an attribute, branches that shows outcomes of the test, and leaf nodes containing 

class labels [8].  

The regression tree algorithm works iteratively by splitting the dataset and 

averaging the original target values to create predictions on both sides of the split. Then 

the chosen metric is calculated from the original and predicted outputs. Having n values 

for predictor and output variables, when n-1 metrics are calculated, a choice is made to 
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split the dataset where the error metric is the lowest. With the selected split, the other data 

points go to one of the nodes and the process is repeatedly done on both sides creating a 

tree-like structure [19]. The ExtraTreesRegressor, which is used in the project, operates 

by fitting numerous randomized decision trees on different sub-samples of the dataset and 

averages the predictions to be more accurate and avoid over-fitting [18] 

3.3.4 Neural networks 

The creation of neural networks comes from the idea, that the human brain 

computes in a completely different way than a digital computer does. The human brain 

can organize its neurons, the structural constituents of the brain, to perform computations 

like perception or pattern recognition. 

Basically, an artificial neural network (ANN) is designed to model the way the 

brain performs a task. The neuron of a neural network is an information-processing unit 

that is the basis of the neural network. On Figure 2, the model of a neuron and its main 

elements are presented.  

The set of synapses (connecting links) are characterized by their weights, with 

that input signals of the synapses are multiplied by. A summing junction is responsible 

for summing the weighted input signals and the activation function limits the output 

signal’s amplitude range to a finite value. Three basic types of activation functions are 

identified: threshold, piecewise-linear and sigmoid functions [20]. Sigmoid function, 

which has an s-shaped graph was the most used activation function, however by now 

another function was discovered that usually performs better and is easier to train, the 

Rectified Linear Units (ReLU). ReLU is a piecewise-linear function which outputs the 

input itself if it is positive, and zero if it is not. It has become the default activation 

Figure 2: Nonlinear model of a neuron [20] 
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function for many kinds of neural networks due to its fast training and good results [22]. 

The model on the figure also includes external bias, that increases the net input of the 

activation function if it is positive and decreases in case it is negative. 

The perceptron, consisting of a single neuron with synaptic weights and bias that 

can be adjusted, is the simplest type of a neural network. This perceptron with a single 

neuron is limited to classification tasks between only two classes. However, neurons can 

be organized in layers as well. The simplest layered neural network consists of an input 

layer and an output layer only. This single-layer network is considered to be feedforward, 

as the projection only happens in one direction, from the input layer to the output layer. 

Feedforward neural networks can have one or more hidden layers as well, where the nodes 

are called hidden neurons [20]. The model of a multilayer feedforward neural network on 

Figure 3 shows the three different layers. The input layer transfers data received from the 

network to the connected neurons in the hidden layer. The data is processed in the hidden 

layer and then transferred to the output layer, which provides an output based on the 

analysis of the received data [22]. 

Types of neural networks that are not feedforward but have feedback loops are called 

recurrent neural networks. A feedback loop in a single layer neural network works in a 

way that each neuron feeds back its output signal to the inputs of all other neurons. It can 

also have self-feedback loops where the output of a neuron is also fed back to its own 

input. Feedback loops can have a great effect on the network’s learning abilities and 

performance as well. 

Figure 3: Model of a multilayer neural network [22] 
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 In this project, multilayer perceptrons (MLP) are used for modelling. In this type 

of neural network each neuron includes a nonlinear activation function, the network has 

one or more hidden layers and also high degrees of connectivity. MLPs has been 

successful in solving various kinds of difficult problems due to training them with the 

well-known back-propagation algorithm. This algorithm consists of a forward and a 

backward pass. In the forward pass phase, the network processes the input by activating 

the neurons and produces an output value while the synaptic weights stay fixed. During 

the backward pass, the synaptic weights are adjusted based on the calculated error that is 

propagated back through, layer by layer [20]. This process is repeated for each input data 

in the given training dataset. One round of passing the entire dataset is called an epoch in 

the Keras library  [21] used in this project. 

Using neural networks has several advantages, some of the main benefits Haykin 

[20] defined are the following: 

• Nonlinearity: It is especially important when the generator of the input 

signal is also nonlinear, for example a speech signal. 

• Input-output mapping: It is created by the network to be able to perform 

supervised learning and learn from the given examples. 

• Adaptivity: Neural networks are able to adapt their synaptic weights 

according to changes in the environment, so they can be retrained easily 

when a minor change happens. 

• Evidential response: Neural networks can provide information about the 

made decision in pattern classification problems, so this way the unsure 

patterns can be rejected to improve performance. 

• VLSI implementability: Because of its massive parallelism, a neural 

network can compute certain tasks fast. This way it is appropriate for 

implementing very-large-scale-integrated (VLSI) technology, which can 

capture complex behaviors. 

However, neural networks have some limitations as well, for example, they require 

training, and a large neural network needs a lot of processing time [22]. Another problem 

with neural networks is that they are an example of the black-box approach, where the 

model is selected in a mechanistic way and there is little understanding about the 



 19 

underlying mechanism. Because of this, ‘black boxes’ and also neural networks might 

not always give sufficient results [13].  

3.4 Training and optimization 

The dataset was split into train and test set with different approaches in the project. 

One approach was to split in time and use for example first 60% of data points in time for 

training, while remaining 40% for testing. Another approach was to split patients and use 

some percentage of them for training, then test the model on unseen patients. 

Other than simple train-test splitting, the K-fold cross validation method was used 

for training in the project. The main idea of the cross-validation is the hold out method, 

meaning the available set of N examples is divided to K subsets (K>1) and the model is 

trained on all subsets except for one. This remaining subset is used to measure the 

validation error on, and the process is repeated K times, every time using a different subset 

for validation [20]. 

Building an optimal machine learning model can be a complex and time-

consuming process. A key component of this process is to design an ideal model 

architecture by optimal hyperparameter configuration. There are two types of parameters 

in machine learning models: model parameters, which can be initialized and updated 

during the learning process and hyperparameters, which cannot be estimated from the 

learning process. Hyperparameters must be set before training because they are used to 

configure the model, or to specify the algorithm for minimizing the loss function. There 

are different types, hyperparameters can be categorical, discrete, or continuous.  

However, manual tuning might be ineffective in some cases, for example if the 

model evaluation is time consuming or there is a large number of hyperparameters [23]. 

Fortunately, automated hyperparameter optimization can reduce the required human 

effort in machine learning, improve the algorithms’ performance and is also more 

reproducible than manual search [24]. The process consists of four components: a 

regressor or a classifier with its objective function, a search space, a search or 

optimization method used for finding hyperparameter combinations, and an evaluation 

function for comparing the performance of different configurations. The main goal for 

hyperparameter optimization (HPO) is to enable users to apply machine learning models 

effectively by automating the hyperparameter tuning process [23]. 
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Grid search was used here, which is a basic HPO method that performs an 

exhaustive search on the hyperparameters given by the user, so the user must have 

preliminary knowledge of these. This method is widely used because of its mathematical 

simplicity, and it can run in parallel because results of one trial are independent from 

other trial results. However, the consumption of computational resources grows 

exponentially when more hyperparameters need to be tuned simultaneously [25]. 

3.5 Evaluation metrics 

When predicting continuous variables, a measure is needed which can tell how 

close the predictions are from the actual values. Mean Square Error (MSE) can be used 

for this purpose, which is calculated with the formula, 

𝑀𝑆𝐸 =  
1

𝑛
∑(𝑌𝑖 − 𝑌�̂�)

2

𝑛

𝑖=1

 

where 𝑌 is the actual value and �̂� is the predicted value [19] . In the project the Root Mean 

Square Error (RMSE) is used for evaluating the prediction accuracy, which is calculated 

by taking the root of MSE, as in the formula: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑌𝑖 − 𝑌�̂�)2

𝑛

𝑖=1

  

In the baseline model evaluation only RMSE is used, but later, when not only 

accuracy but the correctness of the predictions is examined as well, the Mean Absolute 

Percentage Error (MAPE) is considered to give better insights. MAPE is calculated as the 

following formula, where m is the number of predicted samples, and the values are the 

original measurements [4]: 

𝐸𝑟𝑟𝑜𝑟 =  

∑
𝑎𝑏𝑠(𝑡𝑟𝑢𝑒_𝑣𝑎𝑙𝑢𝑒𝑗 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑣𝑎𝑙𝑢𝑒𝑗)

𝑡𝑟𝑢𝑒_𝑣𝑎𝑙𝑢𝑒𝑗

𝑚
𝑗=1

𝑚
∗ 100 

The MAPE shows the mean of relative absolute differences in a predicted sample, which 

gives an estimate of the range in which on average the model predicts above or below the 

actual measurement value. 
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3.6 Technology 

For the data mining project, Python [26] programming language was used because 

of the rich set of libraries it offers. Jupyter Notebook [27] provided and interactive 

environment to extract insights of the data.  

Pandas [28] , NumPy [29] and SciPy [30] libraries were used for data 

manipulation, conversion, and calculations, while Matplotlib [31] and Seaborn [32] for 

visualization. PyCaret   [33] was used for automated machine learning which helped in 

model selection. The final machine learning models were created with Scikit-learn [34], 

Keras [21], pmdarima [35] and pyclustertend [36].  
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4 Related work 

Machine learning methods have been widely applied in clinical diagnosis and 

prognosis prediction, as they proved to be advantageous in finding inherent correlations 

and understanding patterns of massive and complex data. As nowadays HTx is still 

considered as the gold-standard treatment for patients with end-stage heart failure, and 

the decision about transplant candidacy and donor organ allocation is also influenced by 

the post-transplant survival. Therefore, the prediction of the recipient’s survival is a very 

important issue. However, there is no risk-prediction model for assessing prognosis after 

HTx, that is accepted generally and has high-accuracy [26]. 

Zhou et al. [26] made an attempt to develop a 1-year survival prediction model of 

HTx, that can help in clinical decision-making as well as in optimization of organ 

allocation strategies. Their best performing model was a Random Forest, and they have 

found the albumin, the age and left atrium diameter as the most important variables 

affecting 1-year mortality of HTx. They also reached the conclusion, that machine 

learning methods are most resist to overfitting, compared to traditional regression 

analysis. Medved et al. [2]  found, that a deep learning based risk prediction model has 

greater accuracy for the prediction of HTx outcomes, than a traditional logistic-regression 

based model.  

Besides the survival, other conditions can be examined regarding HTx. For 

example, Mohacsi et al. [38] investigated lactic acidosis following HTx by performing 

ABG analysis, however, they only used statistical methods. They found no correlation 

between lactic acidosis and blood gas analysis during the examined extracorporeal 

perfusion period. Braith et al. [39] also used statistical analysis to examine ABG 

parameters in order to draw conclusions about the development of cardiodynamic 

hyperpnea in heart transplant recipients. 

Others also examined ABG parameters with using machine learning approaches, 

for different purposes. Wajs et al. [5] focused on optimizing the forecast of ABG 

parameters. The used Multilayer Artificial Neural Networks on time-series data of 

extremely premature infants. They found that it is very difficult to build a proper model 

based on the historical data due to the patients’ changing personal dynamics and 

biochemical processes. Thus, they used a model working in real time loop, meaning it 
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was retrained in every time step, using data only from a certain interval. In another study, 

Wajs et al. [4] examined ABG parameters in new-borns again, and reached the 

conclusion, that it is possible to successfully predict ABG value by predicting single 

points iteratively, instead of predicting an entire time series immediately. The ANN they 

used, predicted only result in every step and reached an average error below 1%. Wernly 

et al. [6] researched, how mortality in septic patients can be predicted based on ABG 

parameters. They used a type of Deep Neural Networks, using long short-term memory 

(LSTM) to learn dependencies between ABG parameters. According to their results, 

LSTM-based models can help ICU physicians by predicting mortality with high accuracy. 
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5 Blood test data mining 

In this section, the available dataset consisting of the arterial blood gas 

measurements of heart transplant patient is first cleaned and prepared for analysis. Then 

the pre-processed dataset is explored to understand the behavior of parameters and 

differences among patients. After that, models are created for different problems and their 

performance is evaluated. In the end, the results of blood test data mining are summarized.  

5.1 Data pre-processing 

5.1.1 About the dataset 

The dataset used for the project contains the blood test results of patients who 

went through heart transplantation. The meaning of the attributes in the dataset are 

explained in Table 1. 

The index of the created data frame is the pt_id column, which identifies 5057 different 

patients. The data is considered to be time series data, as the measurements were made 

sequentially in time, with the min attribute marking the time points. Besides this initial 

dataset, the reference value ranges of the different blood gas parameters were also 

collected.  

Table 1: Description of attributes in the dataset 
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5.1.2 Data cleaning and preparation 

The data preparation phase of the project includes activities that contribute to 

creating the final dataset for modelling from the initial data, such as transforming and 

cleaning the data. Cleaning data is necessary to handle missing data, empty values or 

incomplete data [8].  

As the table contained several empty values, the first step of cleaning was 

dropping the rows where all blood gas parameters values were missing. This way the 

initial 15628 rows in the dataset decreased to 9445. Out of the remaining 1535 unique 

patients, many patients had only few measurements (rows), as presented on Figure 4. Data 

of patients with measurements at only one or few times can not be used as time series 

data, so the data was filtered to those who have at least 10 measurements, leaving 293 

patients.  

Patients had the measurements at different times, so a common time interval 

needed to be defined for further analysis. The average value of the earliest measurement 

for patients was around 6 minutes before surgery, while the average of the latest 

measurement was around 573 minutes after surgery. According to this, the data was 

further filtered to those who had measurements between -10 and 600 minutes, leaving a 

final number of 94 patients in the dataset. 

For modelling purposes, the data has been transformed to have values for every 

patient and in every minute for a certain time interval (after the exploratory data analysis). 

There were some cases where more measurements have been recorded in few minutes, so 

the data was first transformed to contain the averages of measurements that were recorded 

Figure 4: Count of patients regarding the number of measurements 
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less than 5 minutes after each other. After that, the interpolation was done by using 

Akima1DInterpolator [40] from the SciPy package [30]. With the Akima interpolation, a 

curve can be created that passes through the given points smoothly. The slope of the curve 

is determined locally at each point, using the next neighboring points to determine 

coefficients for the interpolation polynomial [41]. As the Cl- parameter had missing 

values at many time points and only one measurement for several patients, it could not be 

interpolated and were not used for modelling. From the created slope 300 data points were 

sampled equally, meaning one sampled data point (time step) has a length of around 2 

minutes. The final dataset for baseline modelling contained 94 patients’ interpolated data 

of 10 blood gas parameter for a 300 time step long interval. 

5.2 Exploratory data analysis 

Exploratory data analysis (EDA) was defined by Behrens as “a well-established 

statistical tradition that provides conceptual and computational tools for discovering 

patterns to foster hypothesis development and refinement” [42]. 

To begin with, the survival of patients was examined. As presented on Figure 5, 

the number of patients that died after the transplantation is less than half of patients who 

survived. 

The change in time of blood gas parameters were compared between the two groups with 

statistical significance test. The compared samples were created for each blood gas 

parameter by rounding the minutes to nearest tens and taking the mean values of these 

rounded times. Non-parametric tests were used as the created samples did not follow a 

normal distribution. According to the Mann-Whitney test’s results presented on Table 2, 

at a 0.05 significance level the null hypothesis can be rejected at all parameters except 

Figure 5: Number of surviving and dead patients 
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Glu and Cl-, where the higher p-values suggest that the samples were drawn from the 

same distributions. 

Figure 6 shows the change of mean values over time in the two groups for the parameters 

with a significant (BE) and non-significant (Cl-) Mann-Whitney result.  

The measurements in the two groups were also compared by taking the mean values of 

all parameters at different points in time as well. According to the Mann-Whitney test’s 

results, with a 0.05 significance level there is not enough evidence to reject the null 

hypothesis at any point of time. On Figure 7, the differences between mean values of the 

different parameters are plotted for each examined time point. The plotted values were 

Figure 6: Change of BE and CL- in groups of survived and dead patients (y-axis: group 

averages at rounded minutes) 

Table 2: Mann-Whitney tests results on comparing parameter changes between survived and 

dead patients 
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calculated by taking the average of survived and dead patient groups for each parameter 

at the rounded time points and calculating their difference. Even though this plot shows 

big differences at some minutes, p-values of the statistical test suggest that the samples 

does not differ significantly at any time.  

 

The group of patients who passed away was further examined, regarding the 

length of time patients survived after the transplantation. Figure 8 shows the distribution 

of these patients among the different time categories. 

To check whether the change of blood gas parameter values differ significantly between 

the different groups, again a non-parametric test, the Kruskal-Wallis test was conducted. 

Like before, the six compared sample was created by rounding the minutes to nearest tens 

and using the mean values of parameters at the rounded minutes. The results show that 

except for the Glu and Na+ parameters, the null hypothesis can be rejected at all other 

Figure 7: Differences of mean values between survived and dead patient groups (y-axis: 

difference of group averages at rounded minutes) 

Figure 8: Distribution of dead patients regarding the time of survival after surgery 
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parameters meaning the samples created from group averages differ significantly. The 

lowest p-values appear at the tHb, Hct and pH parameters. 

 The blood gas parameters measurements were further explored in terms of 

reference intervals, since values outside reference intervals can be dangerous. 

Investigating further the differences between the patients who survived and those who 

passed away, the percentage of patients with values out of reference interval for each 

parameter was compared over time. According to the Mann-Whitney significance test’s 

result, the null hypothesis can be rejected and the samples differ significantly for 6 

parameters. The changes in the number of patients outside the reference intervals over 

time for the parameter with the lowest (BE) and highest (PCO2) p-value are plotted on 

Figure 9. 

For gaining information about the connection between the different blood gas parameters, 

Spearman correlation analysis was conducted with the spearmanr function from SciPy 

package. The correlation of each parameter combination was checked individually for 

every patient. The results were filtered to only include significantly correlating 

combinations using a 0.05 significance level. Then the positively and negatively 

correlating parameter pairs were separated and ranked by the Spearman correlation 

coefficient and p-value for each patient. Finally, the individual results were summarized 

to check how often a pair of parameters has the strongest positive or negative correlation 

Figure 9: Percentage of patients outside reference intervals of BE and PCO2 over time 
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among patients. The results on Table 3 show how many times a pair is in the strongest 3 

combinations for all patients regarding positive or negative correlation. Looking at the 

positive correlations, the combination of cHCO3- and BE was one in the three pairs 

having the strongest correlation for 77 patients. The pair of Hct and tHb was among the 

three strongest correlating pairs for almost the same number of patients as well. For the 

negative correlation, pH and PCO2 was one of the three strongest correlating pairs for far 

more patients than any other combination. Based on this table, these pairs mentioned have 

the strongest positive/negative correlation in general.  

To discover if clusters exist in the data, Principal Component Analysis (PCA) was 

applied on the interpolated values. PCA is an old technique used for reducing 

dimensionality in a dataset that consists of many correlated variables. The main idea of 

PCA is to achieve this reduction by transforming to an uncorrelated and ordered set of 

variables, the principal components (PC), while keeping the highest possible amount from 

the variation of the dataset [43]. The Hopkins test was used for evaluation, which can be 

helpful in deciding whether the data follows a uniform distribution, or it has clustering 

tendencies. The Hopkins score from pyclustertend package [36] close to 0 indicates that 

the data is not uniformly distributed and might have existing clusters, but a higher score 

around 0.3 means the data does not have clustering tendencies [36].  

PCA was applied on data from different time intervals, but the lowest Hopkins 

score was achieved by using an interval for each parameter in which the standard 

deviation was highest. The two PCs used together covered 55% of explained variance, 

with the BE having the highest loading score in the first and PCO2 in the second 

Table 3: Results of correlation analysis among parameters 
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component. The result is plotted on Figure 10, from which clustering tendencies can be 

seen, however no clear clusters can be defined.  

Furthermore, Functional Principal Component Analysis (FPCA) was tried on each 

parameter individually as well, implemented with the fdasrsf package. FPCA is useful 

when keeping the patterns in the time-series data is more important than keeping the 

absolute variance, as it determines the corresponding functions for underlying patterns 

[44]. The results (part of them plotted on Figure 11) indicate that none of the parameters 

can be used for defining clear clusters. 

The interpolated data about the blood gas parameters was further examined, using 

the Predictive Power Score (PPS). The PPS is an alternative correlation metric, that can 

detect non-linear and asymmetric relationship between features, even for not numerical 

ones. For example, it can be applied for feature selection as PPS shows which features 

can be predicted by others, so the ones that do not add new information can be eliminated 

[45]. The PPS matrix of the parameters is visualized on Figure 12, where target features 

are on the y and predictors are on the x axis. 

 

Figure 10: Result of PCA on interpolated data 

Figure 11: Part of the results from FPCA 
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Darkness of the cells represents stronger predictive power, and relatively dark cells are 

present for every target. This means, for each parameter there are some good predictors 

among the others. Considering the results of all the different tests, linear and non-linear 

relationships can be shown among the blood gas parameters. 

5.3 Baseline models 

To explore the relationships between blood gas parameters and patterns in the 

time-series data, many different questions were investigated. Parameter values of the 

patients were predicted using their past values, other parameter values and other patients’ 

measurements as well. For the first approach, regression models were tried for prediction. 

After that, two other directions were explored, time series models and neural networks. 

All models were tested on one patient first, because of the limitation of time and 

resources, and to see if the algorithms are suitable to be applied on all patients. The 

baseline models are summarized in this table:   

Figure 12: PPS matrix of parameters 

Table 4: Summary of baseline models applied for each patient 
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5.3.1 Linear regression and tree-based models 

The goal of regression was to predict values of one blood gas parameter for 

patients individually. For one Regression1 model, the predictor variables were the 

patients’ own measurements of other parameters. The target variable was a value 

measured 50 time steps later, than the values of the predictor variables. With the help of 

the PyCaret library, several types of regression models were applied and evaluated on the 

one randomly selected patients’ data, using each parameter as target variable. According 

to the results, the ExtraTreesRegressor from scikitlearn package model had the best 

performance sorting by the R-squared metric. It was applied on every patient’s data using 

5-fold cross validation. The performance is evaluated by the root mean squared error 

(RMSE) of all trials. The prediction made in the last fold and the corresponding test values 

are plotted for some parameters of this patient on Figure 13, with the time steps in test 

interval on the x-axis.  

For the second approach in Regression2 model, the predictor variables were the 

measurements of all parameters from all other patients. The target variable was a 50 time 

steps late measurement and the best performing regression models were defined as before 

too. The best model was ExtraTreesRegressor for the Glu parameter, the BayesianRidge 

for Hct and Na+ parameters, and LinearRegression for all other parameters. The 

corresponding models were applied using K-fold cross validation on each patient’s data.  

Figure 13: Comparison of predicted and test values for regression model (y-axis: normalized 

predicted/test values of parameters) 
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In both cases, the average RMSE of the K-fold validation was collected for train 

and test results for each patient, using each parameter as target. Further analysis of these 

results is discussed in Section 5.4.  

5.3.2 Time series models 

Performance of time-series models were tested on a problem, where the goal was 

to predict values of one parameter based on the patients’ own past values of that 

parameter. Using the PyCaret library [33], many kinds of time-series models were 

compared against each other, by being applied on one randomly selected patient’s PO2 

data. 

According to the results in pycaret, the AutoARIMA model from pmdarima 

package had the best performance. This type of model automatically defines the most 

optimal parameters for an ARIMA model by conducting differencing tests [46]. The 

ARIMA model is a variation of ARMA model, which contains the letter I for ‘integrated’ 

because it uses differencing to make the series stationary and then fits it to the differenced 

data to finally integrate it to provide a model [13]. For training, 200 time steps were used, 

and the remaining 100 for testing. Comparison of predicted and test values in the test time 

interval (100 time steps) for some parameters of this patient is plotted on Figure 14.  

From the plots and MSE values it is clear that the predictions do not follow well the actual 

values. The reason for this might be the non-stationarity of the series. As an infinite 

number of non-stationary structures can exist, Chatfield [13] also emphasized that the 

ARIMA model is only capable of describing certain types of non-stationarity series. He 

Figure 14: Comparison of predicted and test values for AutoArima model 
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also stated that relying on automatic ARIMA modelling is complicated and requires 

considerable experience.  

To learn about stationarity in all time-series, the data for all patients’ each 

parameter was tested using the Augmented Dickey-Fuller test [47]. The number of 

stationary series each patient has (out of the 10 different parameters) was summarized on 

Figure 15.  

According to the plot, more than half of the patients have less than 3 stationary time-

series. Furthermore, in multivariate time-series modelling problems, the presence of non-

stationarity makes the modelling complicated and even achieving stationarity does not 

always lead to satisfying results [13]. Because multivariate modelling is necessary for 

learning about relationships between the different parameters, another direction was 

considered for further modelling. 

5.3.3 Neural network models 

The next step was exploring neural network models, as they do not have any 

criteria about the time series data, like stationarity. For creating MLP models, the 

Sequential model and Dense layer type was used from Keras library [21]. The Sequential 

model can deal with simple and layer-based problems, taking one input and giving one 

output. The Dense is a type of layer where all connections are very deep, meaning the 

neurons get their input from all other neurons in the previous layer of the network. 

5.3.3.1 Univariate MLP 

The first Univariate MLP model was tested on the same problem as the time-

series models, aiming at the prediction of values for one parameter based on patients’ 

own measurements of the same parameter. The prediction was calculated for each patient 

Figure 15: Patient count in terms of number of stationary series 
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and each parameter separately. The target variable was the time-series of one parameter 

and the predictor variable was a 1 time step lagged time-series of the same measurements. 

The input was scaled to values between 0 and 1 with MinMaxScaler [48] estimator 

which scales input values with the following transformation:  

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥
∗ (1 − 0) + 0 

 60% of the scaled data was used for training the model, the rest for testing. Two 

Dense layers were used in the model, one with relu activation function, and the other 

layer with linear activation.  The model trained for maximum 200 epochs with stopping 

early if there was no improvement for 30 following epochs. For adjusting the weights and 

optimizing the mean square error as a loss function, the Adaptive Moment Estimation 

(Adam) optimizer was used. The model was trained 5 times and the RMSEs of the 

separate runs were averaged to give a final metric. Figure 16 shows how the loss of the 

training (loss) and test set (val_loss) is changing by epochs during the last 3 run times for 

a randomly selected patient’s PO2 data.  

 As the values of different parameters were scaled between 0-1 before, the RMSEs 

range on the same scale and can be compared. The average RMSE of the blood gas 

parameters from averaging the results of each patient are shown on Figure 17  below. 

Figure 16: Training and validation loss of MLP model with lagged data 
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From the plot it is clear that the PO2 parameter had much higher errors, compared to the 

other parameters. The average RMSEs from this plot are on Table 5, from which pH 

parameter has the lowest average error. 

5.3.3.2 Multivariate MLP 

The task for Multivariate1 model was the same as for Regression1 model, to 

predict values of one parameter, based on the patients’ own measurements of other 

parameters. The MLP model had the same layers and optimizer as the previous one, it 

was trained for the maximum number of 2000 epochs, and 70% of the scaled input data 

was used for training. These settings apply for the following models as well. The predictor 

variables for one target value were the values of other parameters at the same time step.  

The Multivariate2 model was applied in a way, where the values of one parameter 

were predicted based on measurements of the same parameter from all other patients. On 

Figure 18, the distributions of the RMSEs are compared for the two variations of this 

model. 

Figure 17: Average RMSE for parameters using all patients' results 

Table 5: Average RMSEs for Univariate MLP 
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 From the plot the conclusion is that using a patients’ own other parameters for prediction 

is more accurate in most cases, which is not a surprise. However, the RMSE values of the 

model where other patients’ data is used for prediction are not much greater and 

predicting the change of a blood gas parameter accurately without any information of the 

patient might be more interesting.  

5.3.3.3 Multivariate MLP with parallel series 

Using a different kind of model at the Paralell model, each blood gas parameter 

could be predicted in parallel, based on the patients’ own measurements. A target variable 

(vector) in this case consists of a value for each parameter at a certain time step and the 

predictor variables were values of each parameter from the previous time step. The plots 

on Figure 19 show the comparison of predicted and test values in the test time interval 

(120 time steps) for the same patient’s data which was used for the AutoARIMA model in 

section 5.3.2.  

Figure 18: RMSE distributions for two variations of multivariate MLP models 

Figure 19: Comparison of predicted and test values for multivariate MLP model 
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The predictions in most cases seem to be close to the test values, surely following them 

better than the ones on Figure 14 made by the time-series model. The RMSE values was 

collected for this model as well for each patient. 

5.4 Baseline model evaluation 

5.4.1 Score comparison 

In this section, the results are summarized and compared for the models, that were 

applied on the time-series for every blood gas parameter of each patient. The target of 

these models was always a time-series for one or all (parallel MLP) blood gas parameters 

of one patient. These 6 different models were applied for each patient, and the RMSEs 

were summarized. Averaging the RMSEs for the 10 blood gas parameters on Table 6 the 

Regression2 model is the only one having an average RMSE above 1. 

The poor performance of the Regression2 model can also be seen by plotting the 

distribution of test RMSEs among patients on Figure 20.  

Figure 20: RMSE distributions for Regression2 model 

Table 6: Average RMSEs based on all parameters for compared models 
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The extreme errors are not surprising, as here the target parameter was predicted only by 

using measurements from other patients. As every patient has their own personal 

dynamics of biochemical processes in the arterial blood, it is a difficult problem.  There 

are many outlier errors with huge differences in this regression model, meaning the model 

could not find right connections for predicting between different patients. As there are 

non-linear relationships in the data, a linear regression model may not be able to capture 

patterns. 

On the other hand, the Multivariate2 model also predict based on other patients, 

but only from the same parameter as the target, and this way had not much higher RMSEs, 

than the models where patients’ own data was used. 

By looking at the best performing models for the different blood gas parameters 

individually, the results on Table 7 show the same as the previous table, that either the 

Parallel or the Univariate model is the best. 

Figure 21: RMSE distribution for Multivariate2 model 

Table 7: Best performing model for each blood gas parameter 
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The distributions of RMSEs for these two models range on a lot smaller scale, then for 

the Regression2 model. There are still outlier values, but the RMSEs are overall quite 

small for each blood gas parameter.  

The reason for the accurate predictions might be that the patients’ own parameters were 

used as predictors and based on the correlation analysis in Section 5.2 some blood gas 

parameters have strong and significant correlation. Furthermore, the PPS matrix also 

showed that there are some good predictors for each parameters considering all patients’ 

measurements as well.  

In this section the input data, the relationships among blood gas parameters and 

many different questions were examined. Several algorithms were tried to build baseline 

models, that can give somewhat accurate predictions for the change of blood gas 

parameters. All these served as a starting point, to see which directions are worth to be 

explored further for interesting and significant results.  

 

 

 

Figure 22: RMSE distributions for Parallel and Univariate models 



 42 

6 Augmented models 

Based on the baseline results, the main direction for this section is about 

improving and understanding the Multivariate1 model, which can predict blood gas 

parameters based on each other. Although it was not among the best models when looking 

at the parameters individually, it had better average RMSE than the Univariate1 model 

and it had a more complex task, as it only had other parameters as predictors. After 

optimization the Multivariate1 model will be further tested to gain a more stable and 

reliable estimate of the performance. The feature importance values will be examined as 

well to understand the influence of different blood gas parameters on each other and to 

see if there were any parameters which would not need to be measured at all. 

Another direction is the development of the current most accurate model, the 

Parallel model, which predicts all parameters in parallel. The goal here is to examine the 

possibilities for predicting further in time, not only for the next time step. In addition, the 

performance of the Multivariate2 model is tested and examined more deeply to 

understand how well it is capable of learning patterns among the patients’ personal 

dynamics. It is also important to find out if there are any blood gas parameters where the 

model can give acceptable estimates for completely unknown patients. 

Furthermore, during the project additional data became available. The decision 

was to expand the current dataset with new patients’ data and apply the knowledge gained 

in the previous sections on a bigger dataset in this section. This additional data contained 

measurements in a wider time period, even for years in some cases. Unfortunately, the 

time of the heart transplantation surgery was unknown, so not all the new data could be 

used. Patients who had measurements in the initial dataset too could be extracted as the 

new dataset contained those measurements as well. After matching new measurements to 

patients in the initial dataset, 48 additional patients’ data became suitable for analysis, 

having 142 patients altogether.  

6.1 Examining reference intervals 

To gain a better understanding and more reliable evaluation of the models’ 

performance, the MAPE evaluation metric was introduced. This metric was chosen based 

on the study written by Wajs et al. [4], where the writers also tried to develop a predictive 
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algorithm for arterial blood gas measurements and trained it with historical samples. In 

this study, the writers also used ANN for prediction and predicted the different blood gas 

parameters in parallel.   

The MAPE is calculated for the original values, not the normalized ones, so 

questions about the predicting correctly regarding reference intervals can also be 

answered. For example, on Figure 23 the original PCO2 measurements are plotted for a 

random patient along with the values calculated by adding (red line) or subtracting (blue 

line) the error percentage. The range bounded by the red and blue line is the possible 

prediction range. The lower and upper limit on the plot are the boundaries of the reference 

interval in which the patient’s PCO2 measurements can be considered normal. From the 

plot it can be spotted that in some cases the model would predict that the value is out of 

reference interval when it is actually not, or it would predict that the value is in the 

reference interval, when it is not considered as normal. False normal (FN) predictions are 

obviously worse than False abnormal (FA), as for some blood gas parameters values 

going outside reference intervals can lead to undesirable conditions. 

For example, a low level of PCO2 indicates that the patient is not oxygenating 

properly, while a high PCO2 indicates underventilation. At a PO2 below 60 (mmHg) the 

patient needs supplemental oxygen, while below 26 (mmHg) the patient is at risk of death 

[5]. To see what danger the final calculated errors mean at different blood gas parameters, 

each model’s performance is evaluated by checking the number of time steps where it 

would give correct, FA or FN predictions regarding reference intervals. These numbers 

will be referred as metrics of the prediction range’s correctness and are used in the 

evaluation of the Multivariate1 and Multivariate2 models. 

Figure 23: Change of original values and values with error by reference intervals 
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6.2 Predicting parameters from each other 

6.2.1 Hyperparameter optimization 

In this project the goal of HPO was to find the hyperparameter combination for 

Multivariate1 model that can improve the evaluation scores, so the model can learn the 

relationships of blood gas parameters better and give more accurate predictions based on 

each other. 

6.2.1.1 Tuned hyperparameters and evaluation 

As the ANNs used in the project are simple MLPs with an input an output layer, 

the hyper-parameters related to the construction of the model were not changed. The loss 

function, activation function and the optimizer were already chosen as well. The focus 

was on tuning hyper-parameters related to the optimization and training process.  

The learning rate was the first to be optimized, as it is considered to be one of the 

most important hyper-parameters. The learning rate defines the step size at which the 

weights are updated during training. A large step size makes the training process faster as 

the model moves quickly towards the minimum point of the loss function, but there is a 

risk of overshooting that point and oscillating around it, without ever converging. A small 

learning rate can converge smoothly, but it can take a long time to reach the minimum. 

The goal is to find a learning rate with which the model can steadily improve and find the 

best weights to minimize the loss function in a reasonable time [23]. By examining the 

Multivariate1 model’s loss by epoch during training with default learning rate of 0.001, 

the large fluctuations suggest instability in the learning progress.  
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Certain parameters need to be defined for the sklearn library’s GridSearchCV 

function, such as param_grid, which is a dictionary with the names of parameters as keys 

and lists of parameters to try as values. The scoring parameter also needs to be passed to 

the grid search function if the estimator does not provide a score function. This parameter 

determines the evaluation strategy for the performance of the cross-validated model on 

the test set. For the first grid search, possible values (0.01, 0.001, 0.0001, 0.00001, 

0.000001) for the learning rate were passed to the GridSearchCV funciton. Based on the 

results, out of these values the best learning rate is 0.0001. The change of the model’s 

training loss by epochs with the optimized learning rate is clearly way smoother than 

before. The RMSE in this case decreased from 0.00083 to 0.00051 and the MAPE from 

0.089 to 0.058.  

Figure 24: Training loss by epochs with optimal learning rate 

Figure 25: Training loss by epochs with original learning rate 
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 After optimizing the learning rate, different weight initializers were passed to the 

grid search function. These initializers set the initial random weights of Keras layers [49]. 

Out of the eight initializers (uniform, lecun_uniform, normal, zero, glorot_normal, 

glorot_uniform, he_normal, he_uniform) the three with the best evaluation score were 

glorot_uniform, normal and lecun_uniform. These initializers were passed to the final 

grid search along with possible mini-batch and epochs sizes. The mini-batch size defines 

the number of processed samples before weight update, while epoch number defines the 

number of times the entire training dataset is passed [23]. The best hyper-parameter 

combination based on the last grid search results is has normal as weight initializer, 32 as 

batch size and epoch number remained 2000. 

 To compare the overall performance of the original and optimized Multivariate1 

models, it was tested with the tuned hyper-parameters for all patients and each blood gas 

parameter. This time, a 5-fold validation was used for testing the model, not just a simple 

70-30% split of the dataset, as before. For each patients’ every parameter, an average test 

RMSE and MAPE were calculated from the 5 folds, along with standard deviation of the 

errors. Figure 26 compares the averaged RMSEs for the original and hyper-parameter 

optimized models on the upper bar plot, and the averaged MAPEs below. By only looking 

at these plots, the conclusion could be that the hyper-parameter optimized model performs 

better, as it has lower errors on average. 

However, when looking at the CVs of the error metrics as well on Figure 27, it looks like 

the optimized model has errors varying on a wider range for almost every parameter. 

Figure 26: Comparison of average error metrics for original and optimized model 
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 It means that even though the optimized model has lower average errors among all 

patients, its performance is less stable with more outstanding errors. 

Finally, the correctness of the possible prediction range was compared for the 

models on Figure 28. As the prediction range is calculated with an averaged MAPE, it is 

not a surprise that the optimized model has larger ranges for correct predictions. Even 

though the optimized model would make less FA predictions on average, there are some 

parameters where the model would make more FN predictions.  

Taking all this into consideration, the model with the original parameters might 

be better, because stability is very important for this problem. It must be noted that the 

Figure 27: Comparison of error CVs for original and optimized models 

Figure 28: Comparison of prediction range correctness for original and optimized model 
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hyper-parameters were optimized on one patient’s data because of time and resource 

limitations, which can explain why the errors have bigger variances. The chosen hyper-

parameters might not be the optimal for some other patients with very different personal 

dynamics. It requires further research and different approach to find hyper-parameters 

that are optimal in general if such parameters even exist. 

6.2.2 Feature importance examination 

To understand deeper the relationships between blood gas parameters and 

examine their effects on each other, the feature importance of Multivariate1 model was 

examined.  

For this purpose, the SHAP method (SHapley Additive exPlanations) was used, 

which is based on cooperative game theory and is used to enhance transparency and 

interpretability of models. The SHAP values can help in explaining how different features 

affect the model’s output. The absolute SHAP value of a feature shows how much that 

feature affected the prediction, while the sign of the SHAP value indicates the 

directionality [50]. 

 On Figure 29 the SHAP values are plotted with a beeswarm plot for predicting 

pH for a patient. On this plot, the dots represent single observations. The features are 

ordered by their effect on the model’s output, so in this case the PCO2 parameter had the 

biggest effect on predicting the pH.  The color of a point shows how high or low value 

that observation has compared to other observations. It seems like both higher and lower 

PCO2, tHb and Glu values had a positive impact on the prediction, while for example in 

the case of Na+ only high values had positive impact on pH. Low Na+ values decreased 

the predicted pH value. 

Figure 29: SHAP values of pH prediction for one patient 
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The SHAP values were collected for each patient’s every parameter to see a 

general picture of the feature importance. On Figure 33 the average feature importance 

among all patients (y axis) is plotted for pH, PO2, cHCO3- and Hct. The directionality of 

the impact is represented by colors as well. From these plots general conclusions can be 

drawn, such as BE having the largest negative impact on average for pH, or tHb increasing 

the most predicted values for Hct. By looking at the plot for every blood gas parameter 

(including the other 6 which are not on Figure 30 it is possible to identify 1-3 features for 

each target parameter with much greater importance compared to other features. 

The feature importance was summarized with percentage of patients as well. The 

most important features in percentage of patients are presented on Figure 31 for each 

parameter, where darker cells show bigger importance. From the heatmap it can be 

observed that there is always a little percentage of patients for whom a certain parameter 

is the most important feature. The only case where a feature was not the most important 

for any patient is pH for predicting tHb. Other than that, even though some features had 

much stronger impact on average, when looking at patients individually, all features are 

most important for someone. Because of this, no features should be excluded from 

predictor variables.  

Figure 30: Average feature importances among all patients for pH, PO2, cHCO3-, Hct (y-axis: 

averaged SHAP values) 



 50 

 

6.3 Predicting further in time 

In this section, the Parallel MLP model was developed further to give an output 

for more time steps ahead. To achieve this, a multiple parallel input and multi-step output 

MLP was used, where the m input vectors, and n output vectors contained values for each 

parameter at the previous m or following n time steps. The difference between this model 

and the previous ones is that those only predicted for 1 time step ahead, and those 

predictions were summarized. However, this kind of model predicts n step further in time, 

which can be useful if data is only at hand for 300-time steps.  

The model was tried out with different number of input and output vectors, always 

using 30% of time steps for testing and 70% for training. First, samples are created by 

splitting the data to a three-dimensional array with predictors (X) and another with target 

values (Y). The shape of array X is (300, m, 10) and for Y (300, n, 10) as the dataset 

contains 300 time steps for 10 parameters. Then both X and Y are split into X_train, 

Y_train, X_test and Y_test arrays. These arrays are also three-dimensional, but the first 

dimension is not 300. In case of an n length output, the number of times steps that can be 

used for training and testing equals 300-n, because when n=100 then 100 time step length 

prediction cannot be validated after the 200. time step. In each sample, the input and 

output time steps are shifted with one time step. The size of train and test sets for different 

length output models is on Table 8. 

Figure 31: Most important features in percentage of patients 
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The RMSEs and MAPEs were calculated for each n length prediction on every 

patient’s data. Then the error metrics among patients were averaged for different 

parameters and different time steps of the test set. How the average RMSEs changed for 

Na+ when the model predicted for different n lengths based on 1 previous input, is plotted 

below. Average RMSEs are clearly getting higher when predicting further in time. 

Based on this, the model was tested with different number of input vectors as well. In this 

case, the number of times steps that can be used for training and testing equals 300-n-m. 

For example, if m=5 and n=100 predictions can only be validated until the 200. time step 

and because more time steps are used as input, predictions can only be made until the 

195. time step. A calculation for each case is on Table 9, and the time step (ts) indexing 

goes from 0 to 299. For example, when m=5 and n=100, the first prediction is made using 

time steps 0-4 and the output is given for time steps 5-104. In the second prediction, the 

input and output intervals are shifted with 1 time step, as in the second row of the table. 

Figure 32: Change of average RMSE for Na+ parameter at different prediction lengths 

Table 8: Size of train and test sets for multi-step output Parallel models 

Table 9: Example of input and output time steps for multiple input multi-step output Parallel 

models (ts = time step) 
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The change of average RMSEs is plotted on Figure 33. There are only very small 

differences in average RMSEs when increasing the number of input time steps. By 

looking at results for other parameters as well, the conclusion is that it does not make 

much difference to predict parameters in parallel for next 100 time steps based on 

measurements in the previous 1 or 50 time steps. 

 On Table 10, the average RMSEs are summarized for parallel models with 

different length outputs. From the table it looks like the RMSE is not always increasing 

with the output period length. For example, at BE the average RMSE is lower when 

predicting for 100 time steps ahead, than for 50 or 20. 

Figure 33: Change of average RMSE for Na+ parameter at different length inputs 

Table 10: Average RMSE for paralell models with different length output 
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On Table 11, the average MAPEs are also summarized for parallel models with 

different length outputs. For each blood gas parameter, this average error was below 1%, 

even when predicting for the longest length. Here it is also true, that the longest prediction 

period does not always mean the highest average MAPE. 

Based on this, it can be possible to predict blood gas parameters in parallel further in time 

with a low average error. The error might, but not necessarily increase with the length of 

the prediction period and more input time steps does not guarantee more accurate 

predictions.   

6.4 Predicting unknown patients 

In this section, the Multivariate2 model is examined more deeply, as it could be 

interesting and useful if a model could make good predictions without any knowledge of 

a patient. 

 The model itself was not changed, only the way it was trained and tested. At the 

previous version in Section 5, it was trained on 70% (first 210 minutes) of all patient’s 

data and tested on the remaining 90 minutes. It was tested on each patient’s every 

parameter, by retraining every time using all other patient’s data of the same parameter. 

This way the target patient was not fully unknown, as their data was used for training as 

well. In the new approach, 70% of patients is used for training and 30% for testing, 

ensuring that the model is tested on completely unseen patients. So first, the patients were 

randomly split to train and test group.  Then during training, the model tried to predict all 

300 minutes of a random patient in the train set based on the data of the others. After that, 

Table 11: Average MAPE for paralell models with different length output 
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the trained model was tested on all patients in the test set and the error metrics were 

calculated. This process was repeated 10 times, always shuffling the patients before 

creating the train-test groups, to achieve more stable results. 

 The error metrics were averaged for all 10 rounds among the test patients. These 

average metrics are in the table below. From this table, the Glu parameter has the lowest 

average RMSE and the Na+ the lowest average MAPE. 

However, the standard deviation of the error metrics was also collected to compare the 

coefficients of variation (CV) among blood gas parameters. The CVs are plotted below 

on Figure 34. for RMSEs and MAPEs separately, representing the relative variability of 

error metrics among different test patients.  

Based on the comparison of CVs among blood gas parameters, the highest variability in 

RMSEs is at pH and for MAPEs it is at BE. High CV for errors means that when 

Figure 34: Coefficients of Variation for error metrics 

Table 12: Average error metrics for Multivariate2 model 
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predicting these parameters for test patients, the model’s performance is not stable as it 

generates widely varying errors and there might be extremely large errors for some test 

patients. Considering the order of parameters for different metrics, although it is not the 

same, the same parameters are in the first and last group of five. From these plots it looks 

like the model can more reliably estimate some blood gas parameters than others for 

completely unknown patients. 

 The average MAPEs were also examined in terms of correctly being in or out of 

reference intervals at each time step with the prediction range (adding/subtracting the 

average error from the predicted value). There is an example of results for one patient on 

Table 13. It shows for example that for PO2, whether the original value was in or out of 

reference interval, the prediction range would also be there at each time step.  On the 

other hand, for PCO2 at 189 time steps the prediction range would be out of reference 

interval (FA), while the original value was in. 

In the case of this patient there would be no prediction range that could be falsely 

estimated to be in the reference interval (FN) when the original values were abnormal. 

Averaging the number of Correct, FA and FN scores among all patients, shows similar 

results, see on Table 14.  

 

 

 

 

Table 13: Prediction range correctness metrics for one patient 



 56 

From this, the conclusion is that the average MAPE might be the least dangerous in case 

of the Glu parameter, where the prediction range is correctly in or out of reference interval 

at 289 time steps on average. It looks like the model was not capable of correctly learning 

patterns among patients to predict for example BE measurements for unknown patients. 

Another important conclusion is that the model does not really give prediction ranges 

with falsely normal predicted values, which makes all error ranges more acceptable.  

Table 14: Averaged prediction range correctness metrics among patients 
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7 Discussion 

In this section, the results of the whole project are summarized, including the 

discoveries of the EDA, the modelling, the optimization, and the feature importance 

examination. First, the results of the EDA and Multivarite1 model are presented, then the 

conclusions form the Parallel and Multivariate2 models are summarized. 

7.1 Main results 

During the EDA, the focus was on finding differences between patients who survived 

or died. Based on the statistical test results, significant differences can be observed between 

these groups in the change of most blood gas parameters during the observed period. By 

examining the two groups in terms of being in or out of reference intervals, there were 

significant differences at 6 parameters. Furthermore, significant differences in the change of 

almost all parameters were also present between patients with different postoperative survival 

lengths. All these differences show that the time series data from blood gas measurements 

could be used for predicting postoperative survival length. The goal of the EDA was also to 

gain insights about the relationships among blood gas parameters to see if they can be good 

predictors for each other. First, the correlation of each parameter combination was examined 

and summarized among all patients. Based on this, cHCO3- and BE parameters had the 

strongest positive, while pH and PCO2 the strongest relative correlation. Other parameter 

combinations also had significant correlation among patients, and the PPS matrix also showed 

that for each parameter there are some good predictors. 

In the end of baseline modelling, the Parallel and Multivariate1 models had the best 

average RMSEs. The final focus of the modelling phase was on the Multivariate1 model that 

predicted one parameter using all the other parameters for each patient individually. This 

model produced average RMSEs between 0.0015-0.0025 for all the parameters, and average 

MAPEs under 1% for each parameter except BE, where it was 1,65%. The optimized model 

had even lower average errors, but with higher variances, so it was less stable when applying 

it on all patients. Based on this, it can be concluded that the blood gas parameters can be 

predicted from each other with small errors. From the feature importance examination, some 

features were identified for each parameter, that have larger impact on the prediction. 

However, in the case of all parameters every feature was most important for some (even very 

little) percentage of patients, so none of them can be excluded.  
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7.2 Additional conclusions 

Additional directions for modelling included predicting the parameters in parallel 

for different time periods and predicting each parameter for unknown patients based on 

other patients’ measurements of the same parameter. 

Based on the results from parallel modelling, it is possible to predict blood gas 

parameters further in time with similarly low average errors, as in the main model where 

the parameters are not predicted in parallel. Also, a conclusion of this direction is that the 

error not always grows as the length of the prediction period is increased and using more 

input time steps did not always result in lower error. This might be because the most 

important part of the input is the closest time step to the chosen output period. Others [4] 

investigating similar problems used most recent samples for prediction instead of all 

historical data as well. 

 In case of predicting unknown patients the average RMSEs was higher compared 

to the other models. It is not surprising, as in the other two problems the patients’ own 

measurements were used and patients can have very different personal dynamics. From 

the average RMSEs it seems like error for pH and Glu vary on a wider range than for 

other parameters, so to find patterns among patients might be the hardest for these 

parameters, while the easiest for PO2 and PCO2. Looking at the average MAPEs, the BE 

parameter has errors on a very large range compared to the others, outlier errors for some 

patients. Also, with the prediction range the most false normal predictions would be in 

the case of BE, cHCO3- and PCO2 on average. On the other hand, it looks like the model 

almost did not make any falsely normal prediction, which is a good result because it 

means that it can make safe predictions (regarding reference intervals) for completely 

unknown patients.  

7.3 Further work 

While working on this project, I came across many different algorithms, 

techniques, approaches, and questions that can form the basis of further analysis. 

With a different approach, the model’s hyper-parameters could be optimized in 

general for all patients, not just using one patient’s data. This way the performance of the 

model could be improved further, and the predictions could be more accurate. In addition, 

the hyper-parameters related to the construction of the model could also be tuned and 
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different types of neural networks can be tried out as well, even more complex ones like 

LSTM. 

As there were some significant differences found between groups with different 

survival length, predicting the survival outcome or length based on blood gas parameters 

could also be an area of further research. Furthermore, other variables about the heart 

transplant patients could be included (if possible). If connections could be found between 

blood gas measurements and for example personal characteristics or received treatment, 

then new features could be introduced to help make blood gas parameter prediction more 

precise. 



 60 

8 Summary 

At the beginning of this report, a brief overview was provided about the challenges 

in heart transplantation to show the importance of continuously searching for methods 

that can help making predictions about patients’ condition more accurate. How data 

mining can help in clinical decision making was presented by reviewing some past 

applications of machine learning and statistical methods related to heart transplantation 

and blood gas parameter analysis. 

The blood test data mining started with the explanation of blood gas parameters 

along with other variables in the data set, and by creating a clean and aggregated dataset. 

The final dataset used for modelling was created by handling missing values, filtering the 

dataset, transforming, and interpolating the values for a certain time interval. Before 

modelling, the dataset was examined through the Exploratory data analysis. The data was 

visualized with charts to gain different insights, such as the survival ratio of patients, the 

differences in the blood gas parameter values between survived and dead patients, or the 

percentage of patients with values outside of reference intervals. Correlation analysis 

among parameters was conducted and the non-linear relationships were examined as well, 

using the Predictive Power Score. Based on the results, there are some significantly 

correlating parameter combinations and there are some good predictors for each 

parameter among the others. Traditional and functional principal component analysis 

were proposed for discovering clusters in the data. According to these, there are some 

clustering tendencies, but no clear clusters present in the data.  

The EDA was followed by the application of linear regression, tree-based, time 

series and neural network models. As most of the data did not have stationarity, which is 

a criterion for multivariate time series models, time-series models were finally not 

considered for use. The regression and neural network models were applied on every 

patient’s data and according to the baseline model evaluation, the Multivariate1 and 

Parallel models made quite accurate predictions. Based on the score comparison and 

considering which problems are more interesting, 3 questions with different MLP models 

were chosen for further investigation. The main results showed that parameters can be 

predicted from each other with average RMSEs between 0.0015-0.0025 and average 

MAPEs under 1%. The feature importance examination showed that although some 



 61 

parameters are a lot more important than others, none of them should be left out. Additional 

conclusions include that it is possible to predict blood gas parameters further in time with 

similarly low average errors, while using more input time steps not always decreases the error. 

Also, it proved to be possible to make somewhat good predictions for unknown patients using 

data only from others, although the RMSEs were higher in this case. For some parameters the 

errors were lower than for others, meaning that in some cases it was easier for the model to 

find and learn patterns in the dynamics of different people. Another promising result is that 

the number of average false normal predictions this model would make was close to 0 in case 

of all parameters. This means that the model would rarely make predictions that are 

misleading in terms of reference intervals, so in most cases it could correctly draw attention 

to blood gas values that are reaching an abnormal value.  

Using these predictive models, ABG tests could be performed less frequently. As 

ABG test is one of the most performed tests in ICU, costs could be seriously reduced, and 

the limited resources of ICUs could be managed more efficiently. Furthermore, clinicians 

could gain insights to expected trends and might be able to prevent life-threatening 

conditions too. 
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