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Kivonat

A modern technologianak koszonhetGen, manapsag mar az egészségiigyben is
lehetséges hatalmas mennyiségii adatot generalni és gyljteni. Mivel a gépi tanulési
modszerek hatékonynak bizonyultak a komplex adatokban rejlé mintdk és kapcsolatok
felismerésében, fontos szerepet jatszhatnak a klinikai dontés-tdmogatasban is. A
szivtranszplantaciés mutét utadni tulélés esélyeit szamos tényezd befolyasolhatja, igy
fontos és hasznos lehet a betegek kiilonb6z6 adatai alapjan az allapotukra vonatkozo
eldrejelzéseket tenni. A projekthez rendelkezésre 4all6 orvosi adatszett a betegek
kiilonb6z6 idépontokban vett artérias vérgaz paraméterinek méréseit tartalmazta, mind a
szivtranszplantacié el6tt és utan. A mért paraméterck idésoros adatait elészor is meg
kellett tisztitani ¢és aggregalni, hogy kiilonb6zd adatbanyészati technikakkal elemezni
lehessen. A fobb megallapitasok szerint a paraméterek kozott kimutathatok linearis és
nem linearis Osszefiiggések, illetve a vérgaz mérések valtozasaban is szignifikans
kiilonbségek mutatkoznak a kiilonbozo talélési idejii betegek kozott. Linearis regresszio,
dontési fa alapt, idésoros és neuralis halé alapa modellek késziiltek kiilonbozo
problémakra, hogy kideriiljon milyen tipusi modelleket és kérdéseket érdemes tovabb
vizsgalni. A {6 kovetkeztetés az, hogy a paraméterek elére jelezhetok egymasbol
tobbvaltozos tobbrétegli perceptron (MLP) modellekkel, 0.0015-0.0025 kozotti atlagos
RMSE (root mean square error) és 1% alatti atlagos MAPE (mean absolute percentage
error) mellett. A feature importance vizsgalat alapjan, egyik paramétert sem szabad
kizarni az eldrejelzésbdl. Tovabba, a vérgaz paraméterek idoben nagyobb tavra is eldre
jelezhetok hasonldan alacsony atlagos hibakkal. Teljesen ismeretlen betegek esetében,
mas betegek adatai alapjan ugyan kisebb pontossaggal, viszont anélkiil lehet
elérejelzéseket tenni, hogy a prediktalt értékek tévesen esnének a normal referencia-
intervallumba. A 1étrehozott elére jelzé modellek csokkenthetik az ABG-vizsgalatok
gyakorisagat, ezaltal a koltségeket is. Az orvosok tajékozodhatnanak a varhato
tendenciakrol, valamint észlelhetnék az esetlegesen bekovetkezé életveszélyes

allapotokat is.



Abstract

Thanks to modern technology, it is possible to generate and collect large amounts
of data in healthcare too. As machine learning methods proved to be efficient in
recognizing patterns and connections in complex data, they can play an important role in
supporting the clinical decision making. Many factors are influencing the postoperative
survival of heart transplant patients, so basing predictions on different kinds of data about
the patients’ condition can be important and helpful. The clinical dataset given for this
project contains measurements of arterial blood gas parameters taken at different times
from patients before and after the heart transplantation. The time-series data was first
cleaned and aggregated, then it was analyzed with different data mining techniques.
According to the key findings, linear and non-linear relationships can be shown among
the parameters, and significant differences in change of blood gas measurements between
patients with different survival length. Linear regression, tree-based, time-series, and
neural network baseline models were created for different problems to see, which type of
models and questions are worth to examine further. The main conclusion is that
parameters can be predicted from each other using multivariate multilayer perceptron
(MLP) models with average RMSEs (root mean square error) between 0.0015-0.0025 and
average MAPEs (mean absolute percentage error) under 1%. Based on the feature
importance examination, none of the parameters should be excluded from prediction. In
addition, it is possible to predict blood gas parameters further in time with similarly low
average errors. Blood gas parameters can be predicted for completely unknown patients
based only on other patients as well, although with less accuracy, but without making
predictions that would falsely considered to be in the normal reference-interval. The
resulting predictive models could reduce the frequency of ABG testing and this way its
costs as well. Clinicians could gain insights to expected trends and detect possible life-
threatening conditions too.



1 Introduction

As nowadays large amounts of data are being generated and collected in
healthcare too, data mining opportunities continuously arise in the industry. Machine
learning methods are widely used in healthcare, because they proved to be effective in
understanding patterns and finding correlations from massive and complex data. The
insights offered by the application of data mining can play an important role in supporting

clinical decision making.

The first example of human heart transplantation happened more than 50 years
ago, and nowadays heart transplantation is considered as the gold-standard treatment for
patients who have end-stage heart failure. Although there has been significant progress
made regarding this life-saving operation, the success of the transplantation is still
severely restricted due to numerous factors [1]. Furthermore, till 2017 there was no
generally accepted risk-prediction model for prognosis after heart transplantation [2], and
after researching more recent studies still none was found. Because of all the factors
influencing the posttransplant survival, it can be an important task to make predictions

based on different type of data about the patients’ condition, or even survival.

This report begins with a brief overview of the challenges in heart transplantation
and arterial blood gas parameter prediction. After getting to know the biological
background of the project, the goals of data mining along with its process are discussed.
Since data mining uses many statistical and machine learning techniques, these are also
described, putting the emphasis on regression and neural network models. After
understanding the technologies related to the project, some related studies about similar
tasks or technologies are introduced. The description of the performed work starts with
the introduction of the dataset and continues with the cleaning and preparation of data.
Then the main discoveries of the Exploratory Data Analysis and the application of the
algorithms are presented. After explaining the process of modelling and the created
different baseline models, the performance of some models is evaluated and compared.
Based on this, the best models or more important questions are further investigated with
a new evaluation approach, different training, hyper-parameter optimization and feature

importance examination. Finally, the results are examined to draw conclusions and



identify opportunities for further improvement. The report ends with summarizing the
main results, the additional conclusions, and possible further directions of the project.



2 Heart transplantation and blood gas analysis

2.1 Challenges in human heart transplantation

More than 50 years have passed since Dr. Christiaan Barnard performed the first
human-to-human heart transplantation in South Africa. The initial optimism around heart
transplantation (HTx) quickly disappeared, when it turned out that the survival usually
only lasted for days or weeks. Fortunately, during the next two decades the survival period
has significantly improved, thanks to applying more carefulness in donor and recipient
selection, better donor heart management and the use of cyclosporine as the main agent

for immunosuppression [1].

By 2014, the one-year survival after HTx was around 90%, which is a great
achievement compared to 30% in the 1970s. However, the long-term outcomes have not
changed much, and there are many serious challenges in the field. One reason of new
challenges the transplant clinicians are facing is the changing demographics of heart
recipients. A greater part of patients in their sixties and seventies are being transplanted,
who have higher risks of infection and cardiac allograft vasculopathy. The advances in
heart surgery also led to younger patients to survive growing up with congenital heart
disease and develop heart failure later in their life. These patients usually have higher
risks of arterial bleeding and mortality [3]. Other challenges of HTx include the harmful
effects of immunosuppression, which aims at preventing or treating the rejection while at
the same time minimizing the risk of infection or cancer. In fact, the success of HTx has
been closely related to the discovery of effective immunosuppressive treatments [1].
There are still many unanswered questions regarding immunosuppression, not to mention

chronic rejection, antibody-mediated rejection or malignancy [3].

2.2 Arterial blood gas test

The measurements of blood gas along with other monitoring techniques provide
information to the clinician is crucial in assessing patients, therapeutic decision making

and prognostication [4].

Aurterial blood gas (ABG) tests are blood tests performed by using blood from the
artery. An ABG test is used to assess gas exchange in patients with respiratory disorders,

to acquire patients’ acid-base status, and it is one of the most commonly performed tests
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in intensive care units (ICUs). Furthermore, it has numerous applications in other
medicine related areas as well. The ABG test reports the pH of the blood, the partial
pressure of carbon dioxide and oxygen, the bicarbonate level and many analysers also
include concentrations of lactate, haemoglobin, several electrolytes, oxyhaemoglobin,
carboxyhaemoglobin, and methaemoglobin [5]. The ABG test is not only expensive but
also stressful for the subject to carry out, thus the frequency of testing should be reduced

by relying on previous results.

2.3 Blood gas parameter prediction

Prediction of future values for blood gas parameters would lead to better planning
regarding treatment. Besides, having information about expected trends, the clinicians
might be able to prevent life-threatening changes in values as well. Unfortunately, the

prediction of blood gas parameters is usually a very difficult and complex task.

The complexity can arise from the sudden changes in measured values, especially
regarding new-borns [4]. Another issue is that every patient has their own personal
dynamics of biochemical processes in the arterial blood, which can be changing during a

healing process [5].

However, there is great need for precise and rapid predictions in the area. The
limited resources of ICUs need efficient management, especially when external stressors,
like a pandemic increases patient numbers [6]. Laboratory testing occurs frequently for
patients in intensive care, and part of the tests are only run by default without reflecting
changes about the critical status of ICU patients. Using blood test excessively also
increases resource utilization, contributes to blood loss, can lead to incorrect diagnosis
[7]. ABG tests are globally standardized in ICUs and obtained relatively frequently as
well, thus ABG test parameters can be used to develop predictive tools on. Machine
learning can be used for the prediction making and this way also in optimizing the
allocation of resources. In addition, machine learning methods which inherently integrate
a large amount of data, can also play an important role in supporting clinical decision

making [6].
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3 Data mining

Nowadays huge amounts of data are collected from almost every aspect of our
lives daily. The medical and health industry is not an exception either, it can generate
enormous amounts of data as well, for example from medical records. The need to gain

valuable information from this vast amount of data led to the birth of data mining [8].

3.1 Process of data mining

The definition of data mining is discovering interesting and useful patterns and
relationships in data. The goal of data mining can vary, for example it can be used to
generate insightful and understandable reports to end users [10]. There are two types of
goals in general: in verification, the system is used to verify the user’s hypothesis, while
in discovery, the system is used to find new patterns. Discovery can be further divided
into two categories, prediction, and description. Prediction means finding patterns in
order to predict future behaviour of certain entities, while description means finding

patterns for presenting them to users in a form, they can understand [9].

In terms of the CRISP-DM (CRoss Industry Standard Process for Data Mining)
project, a process model was defined providing a framework for data mining projects, so
the projects would not depend highly on a particular person or team, as before. The
CRISP-DM process model can be used in any industry and with any technology to make
the data mining project less expensive, more reliable and faster as well. The CRISP-DM
reference model for data mining consists of six phases. The process begins with defining
a data mining problem and designing a preliminary project plan. After that, initial data is
collected, data quality problems and first insights are identified. Understanding initial
data is also necessary for business understanding, so the first to phases are strongly
connected. The third phase is about creating the final dataset for the model from raw data.
Among other tasks, data preparation includes attribute selection, creating new attributes
and cleaning the data. There is a strong link with the next phase because data problems
or need for constructing new data can also be identified during modelling. In the
modelling phase, different techniques are applied and parameterized. After building one
or more seemingly optimal model, they are evaluated and the steps of constructing them
are reviewed. The purpose of the evaluation phase is to make sure every important

business issue has been considered and to decide on the use of the data mining results. In
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the final phase, depending on the requirements, for example the results can be presented
in a report to the end user, or a repeatable data mining process might be implemented
[11].

Business B o} Data
Understanding =& Understanding

Data

Preparation
A
Deployment
y

Modelling

Evaluation

Figure 1: Phases of CRISP-DM Model for Data Mining [10]

3.2 Statistics

3.2.1 Statistics in data mining

Data mining integrates many techniques from statistics. According to Han et al.,
statistics studies the collection, analysis, interpretation or explanation, and presentation
of data. Statistical models can either be the outcome of a data mining task or a data mining

task can be built on them as well [8].

Basic statistical descriptions, such as measures of central tendency (mean,
median and mode) and dispersion measures (range, quartiles, interquartile range,
variance, and standard deviation), can summarize and give an overall picture of data [8].
Visualization tools like histograms, box plots or scatter plots are also useful for
understanding the structure of data. Another widely used statistical analysis technique is
cluster analysis, which aims at creating internally homogeneous and externally
heterogenous clusters by organizing information about variables. How changes in one
variable result in changes in another, can be measured with correlation analysis. The
correlation coefficient can be useful to understand the predictive abilities of an
independent variable. Furthermore, with regression analysis relationships between a

dependent variable and one or more independent variable can be estimated. Some other
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popular techniques include discriminant analysis, factor analysis and other types of
regression analysis, for example logistic regression [12]. However, applying statistical
methods on large data sets is often challenging, as many methods have high

computational complexity and cost, so algorithms must be designed and tuned carefully

[8]

3.2.2 Time series analysis

An important area of statistics includes methods for analyzing and modelling time
series. A time series consists of observations, that are made sequentially in time.
Examples to time series exist in numerous fields for example in economics, physical
sciences, or engineering. Time series analysis can have different purposes, like obtaining
descriptive measures, explaining properties of one time series based on another, statistical

quality control or predicting future values.

The traditional time-series analysis methods focus on the decomposition of the
variation in the series. According to Chatfield, the variation can be decomposed into four
different kinds of components. First, seasonal effect is a periodically reoccurring
variation, that is easily understandable. Besides seasonal effects, there can be other cyclic
changes that are present at a fixed period, like the daily variation in temperature. Another
component is the trend, which is a long-term change in the level of the mean. The
definition of “long-term” here must depend on the number of observations. After
removing cyclic variations and trend form the time-series, a series of other irregular
fluctuations remain. Some of these irregular variations might be explained with

probability models, like moving average or autoregressive models [13].

The Auto Regression (AR) model calculates the regression of past time series and
present or future values in the series, while the Moving Average (MA) model calculates
the errors of past time series instead of the regression. Combinations of AR and MA
models also exist, where the effect of previous time series and errors are also taken into
account for forecasting the future values [14]. Forecasting of the time-series can be
univariate, which means the forecasts of a variable are based on its past observations,
while in multivariate forecasting the variable depends (at least partly) on values of one or
more other series. To apply any variations of ARMA models, the time-series needs to be

stationarity. Intuitively, a time-series is considered to be stationary if there is no
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systematic change in the mean or variance, and no strictly periodic variations are present
[13].

Overall, statistical methods are applied in data mining for various reasons.
Statistics not only helps to understand the data, but also to discover patterns and
understand the underlying reasons affecting them. In addition, statistics plays a major role
in developing and evaluating models, so using it in data mining is basically inevitable.

3.3 Applied machine learning algorithms

3.3.1 Machine learning

“Machine learning investigates how computers can learn (or improve their
performance) based on data” [8]. Furthermore, the purpose of machine learning is to
automate time-consuming human activities in the knowledge engineering process with
techniques, that can identify regularities in training data [12]. Nowadays a huge variety
of applications take advantage of machine learning: web page ranking, collaborative
filtering, automatic translation and face recognition, to name a few. Just like the range of

applications, the range of machine learning problems is wide as well [15].

Han et al. collected some classic problems in machine learning, that are strongly

connected to data mining [8]:

e Supervised learning has two main categories, classification and regression. In
order to supervise the learning of the model, labeled examples are used for training
the classification model and continuous numerical values for the regression

model.

e Unsupervised learning, also known as clustering, is typically used to discover
classes in the data. The learning is unsupervised because the training data is not
labeled.

e Semi-supervised learning uses labeled and unlabeled examples as well to train

the model.

e Active learning aims at optimizing the model quality by letting users participate

in the learning process to gain knowledge from them.

In the terms of this project, the machine learning problem was a supervised

learning problem. The time-series data was used to predict future values and understand
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the relationships between blood gas parameters. Different kinds of machine learning
models were tried including regression models, tree-based models, time-series models,

and neural networks as well.

3.3.2 Linear regression models

Regression models are suitable for approximation and the simplest model is based
on linear regression. In linear regression the data is fitted on a straight line. The response
variable (y) can be described as a linear function of a predictor variable (x), with an
equation y = wx + b, where w means the slope of the line and b the y-intercept. These
regression coefficients can be determined with the least squares method, that minimizes

the error between the real line separating the data and the estimated line.

An extension of linear regression is multiple linear regression, where y can be
modelled as a linear function of more than one predictor variables [8]. In cases of
multiple-regression models where the independent variables are highly correlated, using
ridge regression is advised in order to reduce the effects of correlation and stabilize the

regression coefficients [16].

In this project, different kinds of regression models were tried. The
LinearRegression model fits a linear model by minimizing the residual sum of squares
between observed and predicted targets. The BayesianRidge model is based on Bayesian
Ridge Regression, which is a type of Bayesian regression. Bayesian regression creates
linear regression by using probability distributors instead of point estimates with the
response variable assumed to come from a probability distribution. BayesianRidge model

iteratively maximizes the marginal log-likelihood for the data points [18].

3.3.3 Tree-based regression models

Besides classification problems, decision trees can be used for regression tasks as
well. A decision tree has a flowchart-like tree structure with internal nodes that contain
tests on an attribute, branches that shows outcomes of the test, and leaf nodes containing

class labels [8].

The regression tree algorithm works iteratively by splitting the dataset and
averaging the original target values to create predictions on both sides of the split. Then
the chosen metric is calculated from the original and predicted outputs. Having n values

for predictor and output variables, when n-1 metrics are calculated, a choice is made to
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split the dataset where the error metric is the lowest. With the selected split, the other data
points go to one of the nodes and the process is repeatedly done on both sides creating a
tree-like structure [19]. The ExtraTreesRegressor, which is used in the project, operates
by fitting numerous randomized decision trees on different sub-samples of the dataset and

averages the predictions to be more accurate and avoid over-fitting [18]

3.3.4 Neural networks

The creation of neural networks comes from the idea, that the human brain
computes in a completely different way than a digital computer does. The human brain
can organize its neurons, the structural constituents of the brain, to perform computations

like perception or pattern recognition.

Basically, an artificial neural network (ANN) is designed to model the way the
brain performs a task. The neuron of a neural network is an information-processing unit
that is the basis of the neural network. On Figure 2, the model of a neuron and its main

elements are presented.

Activation

%0 @ ;\ function

Input . > )i,, o) Duytfut

signals

Summing -
junction

Synaptic
weights

Figure 2: Nonlinear model of a neuron [20]

The set of synapses (connecting links) are characterized by their weights, with
that input signals of the synapses are multiplied by. A summing junction is responsible
for summing the weighted input signals and the activation function limits the output
signal’s amplitude range to a finite value. Three basic types of activation functions are
identified: threshold, piecewise-linear and sigmoid functions [20]. Sigmoid function,
which has an s-shaped graph was the most used activation function, however by now
another function was discovered that usually performs better and is easier to train, the
Rectified Linear Units (ReLU). ReLU is a piecewise-linear function which outputs the

input itself if it is positive, and zero if it is not. It has become the default activation
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function for many kinds of neural networks due to its fast training and good results [22].
The model on the figure also includes external bias, that increases the net input of the

activation function if it is positive and decreases in case it is negative.

The perceptron, consisting of a single neuron with synaptic weights and bias that
can be adjusted, is the simplest type of a neural network. This perceptron with a single
neuron is limited to classification tasks between only two classes. However, neurons can
be organized in layers as well. The simplest layered neural network consists of an input
layer and an output layer only. This single-layer network is considered to be feedforward,
as the projection only happens in one direction, from the input layer to the output layer.
Feedforward neural networks can have one or more hidden layers as well, where the nodes
are called hidden neurons [20]. The model of a multilayer feedforward neural network on
Figure 3 shows the three different layers. The input layer transfers data received from the
network to the connected neurons in the hidden layer. The data is processed in the hidden
layer and then transferred to the output layer, which provides an output based on the

analysis of the received data [22].

hidden layers

output layer

\\;/f_\‘

input layer ¢
)

Figure 3: Model of a multilayer neural network [22]

Types of neural networks that are not feedforward but have feedback loops are called
recurrent neural networks. A feedback loop in a single layer neural network works in a
way that each neuron feeds back its output signal to the inputs of all other neurons. It can
also have self-feedback loops where the output of a neuron is also fed back to its own
input. Feedback loops can have a great effect on the network’s learning abilities and

performance as well.
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In this project, multilayer perceptrons (MLP) are used for modelling. In this type
of neural network each neuron includes a nonlinear activation function, the network has
one or more hidden layers and also high degrees of connectivity. MLPs has been
successful in solving various kinds of difficult problems due to training them with the
well-known back-propagation algorithm. This algorithm consists of a forward and a
backward pass. In the forward pass phase, the network processes the input by activating
the neurons and produces an output value while the synaptic weights stay fixed. During
the backward pass, the synaptic weights are adjusted based on the calculated error that is
propagated back through, layer by layer [20]. This process is repeated for each input data
in the given training dataset. One round of passing the entire dataset is called an epoch in

the Keras library [21] used in this project.

Using neural networks has several advantages, some of the main benefits Haykin

[20] defined are the following:

e Nonlinearity: It is especially important when the generator of the input

signal is also nonlinear, for example a speech signal.

e Input-output mapping: It is created by the network to be able to perform

supervised learning and learn from the given examples.

e Adaptivity: Neural networks are able to adapt their synaptic weights
according to changes in the environment, so they can be retrained easily

when a minor change happens.

e Evidential response: Neural networks can provide information about the
made decision in pattern classification problems, so this way the unsure

patterns can be rejected to improve performance.

e VLSI implementability: Because of its massive parallelism, a neural
network can compute certain tasks fast. This way it is appropriate for
implementing very-large-scale-integrated (VLSI) technology, which can

capture complex behaviors.

However, neural networks have some limitations as well, for example, they require
training, and a large neural network needs a lot of processing time [22]. Another problem
with neural networks is that they are an example of the black-box approach, where the

model is selected in a mechanistic way and there is little understanding about the

18



underlying mechanism. Because of this, ‘black boxes’ and also neural networks might

not always give sufficient results [13].

3.4 Training and optimization

The dataset was split into train and test set with different approaches in the project.
One approach was to split in time and use for example first 60% of data points in time for
training, while remaining 40% for testing. Another approach was to split patients and use

some percentage of them for training, then test the model on unseen patients.

Other than simple train-test splitting, the K-fold cross validation method was used
for training in the project. The main idea of the cross-validation is the hold out method,
meaning the available set of N examples is divided to K subsets (K>1) and the model is
trained on all subsets except for one. This remaining subset is used to measure the
validation error on, and the process is repeated K times, every time using a different subset
for validation [20].

Building an optimal machine learning model can be a complex and time-
consuming process. A key component of this process is to design an ideal model
architecture by optimal hyperparameter configuration. There are two types of parameters
in machine learning models: model parameters, which can be initialized and updated
during the learning process and hyperparameters, which cannot be estimated from the
learning process. Hyperparameters must be set before training because they are used to
configure the model, or to specify the algorithm for minimizing the loss function. There

are different types, hyperparameters can be categorical, discrete, or continuous.

However, manual tuning might be ineffective in some cases, for example if the
model evaluation is time consuming or there is a large number of hyperparameters [23].
Fortunately, automated hyperparameter optimization can reduce the required human
effort in machine learning, improve the algorithms’ performance and is also more
reproducible than manual search [24]. The process consists of four components: a
regressor or a classifier with its objective function, a search space, a search or
optimization method used for finding hyperparameter combinations, and an evaluation
function for comparing the performance of different configurations. The main goal for
hyperparameter optimization (HPO) is to enable users to apply machine learning models

effectively by automating the hyperparameter tuning process [23].
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Grid search was used here, which is a basic HPO method that performs an
exhaustive search on the hyperparameters given by the user, so the user must have
preliminary knowledge of these. This method is widely used because of its mathematical
simplicity, and it can run in parallel because results of one trial are independent from
other trial results. However, the consumption of computational resources grows

exponentially when more hyperparameters need to be tuned simultaneously [25].

3.5 Evaluation metrics

When predicting continuous variables, a measure is needed which can tell how
close the predictions are from the actual values. Mean Square Error (MSE) can be used

for this purpose, which is calculated with the formula,
n
1 -
MSE = = (% - 7)?
i=1

where Y is the actual value and ¥ is the predicted value [19] . In the project the Root Mean
Square Error (RMSE) is used for evaluating the prediction accuracy, which is calculated

by taking the root of MSE, as in the formula:

n
1 ~
RMSE = |~ (v - 7)?

In the baseline model evaluation only RMSE is used, but later, when not only
accuracy but the correctness of the predictions is examined as well, the Mean Absolute
Percentage Error (MAPE) is considered to give better insights. MAPE is calculated as the
following formula, where m is the number of predicted samples, and the values are the
original measurements [4]:

m abs(true_value; — predicted_value;)
j=1 true_value;

Error = * 100

m

The MAPE shows the mean of relative absolute differences in a predicted sample, which
gives an estimate of the range in which on average the model predicts above or below the

actual measurement value.
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3.6 Technology

For the data mining project, Python [26] programming language was used because
of the rich set of libraries it offers. Jupyter Notebook [27] provided and interactive

environment to extract insights of the data.

Pandas [28] , NumPy [29] and SciPy [30] libraries were used for data
manipulation, conversion, and calculations, while Matplotlib [31] and Seaborn [32] for
visualization. PyCaret [33] was used for automated machine learning which helped in
model selection. The final machine learning models were created with Scikit-learn [34],
Keras [21], pmdarima [35] and pyclustertend [36].
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4 Related work

Machine learning methods have been widely applied in clinical diagnosis and
prognosis prediction, as they proved to be advantageous in finding inherent correlations
and understanding patterns of massive and complex data. As nowadays HTXx is still
considered as the gold-standard treatment for patients with end-stage heart failure, and
the decision about transplant candidacy and donor organ allocation is also influenced by
the post-transplant survival. Therefore, the prediction of the recipient’s survival is a very
important issue. However, there is no risk-prediction model for assessing prognosis after

HTX, that is accepted generally and has high-accuracy [26].

Zhou et al. [26] made an attempt to develop a 1-year survival prediction model of
HTx, that can help in clinical decision-making as well as in optimization of organ
allocation strategies. Their best performing model was a Random Forest, and they have
found the albumin, the age and left atrium diameter as the most important variables
affecting 1-year mortality of HTx. They also reached the conclusion, that machine
learning methods are most resist to overfitting, compared to traditional regression
analysis. Medved et al. [2] found, that a deep learning based risk prediction model has
greater accuracy for the prediction of HTx outcomes, than a traditional logistic-regression
based model.

Besides the survival, other conditions can be examined regarding HTx. For
example, Mohacsi et al. [38] investigated lactic acidosis following HTx by performing
ABG analysis, however, they only used statistical methods. They found no correlation
between lactic acidosis and blood gas analysis during the examined extracorporeal
perfusion period. Braith et al. [39] also used statistical analysis to examine ABG
parameters in order to draw conclusions about the development of cardiodynamic

hyperpnea in heart transplant recipients.

Others also examined ABG parameters with using machine learning approaches,
for different purposes. Wajs et al. [5] focused on optimizing the forecast of ABG
parameters. The used Multilayer Artificial Neural Networks on time-series data of
extremely premature infants. They found that it is very difficult to build a proper model
based on the historical data due to the patients’ changing personal dynamics and

biochemical processes. Thus, they used a model working in real time loop, meaning it
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was retrained in every time step, using data only from a certain interval. In another study,
Wajs et al. [4] examined ABG parameters in new-borns again, and reached the
conclusion, that it is possible to successfully predict ABG value by predicting single
points iteratively, instead of predicting an entire time series immediately. The ANN they
used, predicted only result in every step and reached an average error below 1%. Wernly
et al. [6] researched, how mortality in septic patients can be predicted based on ABG
parameters. They used a type of Deep Neural Networks, using long short-term memory
(LSTM) to learn dependencies between ABG parameters. According to their results,

LSTM-based models can help ICU physicians by predicting mortality with high accuracy.
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5 Blood test data mining

In this section, the available dataset consisting of the arterial blood gas
measurements of heart transplant patient is first cleaned and prepared for analysis. Then
the pre-processed dataset is explored to understand the behavior of parameters and
differences among patients. After that, models are created for different problems and their

performance is evaluated. In the end, the results of blood test data mining are summarized.

5.1 Data pre-processing

5.1.1 About the dataset

The dataset used for the project contains the blood test results of patients who

went through heart transplantation. The meaning of the attributes in the dataset are

explained in Table 1.

Attribute Description
pt_id Unique patient ID
event 1 = patient died, 0 = patient survived
event or Length of time the patient survived after surgery. Values: =5+, =2&+, <90n+, <1é+, <7n+,
- =10&+, =le+, <30n+, surv
min Time of measurement in minutes before or after surgery
pH Acidity of the blood (%)
PO2 Partial pressure of oxygen (mmHg)
PCO2 Partial pressure of carbon dioxide (mmHg)
Het Hematocrit - a measurement of the volume percentage of red blood cells (%)
Na+ Natrium concentration (mmol/1)
Cl- Chloride conecentration ( mmol/1)
tHb Total hemoglobin concentration ( g/dL)
Glu Glucose concentration (mmol/1)
Lac Lactate concentration (mmol/1)
cHCO3- Hydrogen carbonate concentration (mmol/1)
BE Base excess - amount of HCO3- (mEq/L)

The index of the created data frame is the pt_id column, which identifies 5057 different
patients. The data is considered to be time series data, as the measurements were made
sequentially in time, with the min attribute marking the time points. Besides this initial
dataset, the reference value ranges of the different blood gas parameters were also

collected.

Table 1: Description of attributes in the dataset
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5.1.2 Data cleaning and preparation

The data preparation phase of the project includes activities that contribute to
creating the final dataset for modelling from the initial data, such as transforming and
cleaning the data. Cleaning data is necessary to handle missing data, empty values or

incomplete data [8].

As the table contained several empty values, the first step of cleaning was
dropping the rows where all blood gas parameters values were missing. This way the
initial 15628 rows in the dataset decreased to 9445. Out of the remaining 1535 unique
patients, many patients had only few measurements (rows), as presented on Figure 4. Data
of patients with measurements at only one or few times can not be used as time series
data, so the data was filtered to those who have at least 10 measurements, leaving 293

patients.
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Figure 4: Count of patients regarding the number of measurements
Patients had the measurements at different times, so a common time interval
needed to be defined for further analysis. The average value of the earliest measurement
for patients was around 6 minutes before surgery, while the average of the latest
measurement was around 573 minutes after surgery. According to this, the data was
further filtered to those who had measurements between -10 and 600 minutes, leaving a

final number of 94 patients in the dataset.

For modelling purposes, the data has been transformed to have values for every
patient and in every minute for a certain time interval (after the exploratory data analysis).
There were some cases where more measurements have been recorded in few minutes, so

the data was first transformed to contain the averages of measurements that were recorded
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less than 5 minutes after each other. After that, the interpolation was done by using
AkimalDlInterpolator [40] from the SciPy package [30]. With the Akima interpolation, a
curve can be created that passes through the given points smoothly. The slope of the curve
is determined locally at each point, using the next neighboring points to determine
coefficients for the interpolation polynomial [41]. As the Cl- parameter had missing
values at many time points and only one measurement for several patients, it could not be
interpolated and were not used for modelling. From the created slope 300 data points were
sampled equally, meaning one sampled data point (time step) has a length of around 2
minutes. The final dataset for baseline modelling contained 94 patients’ interpolated data

of 10 blood gas parameter for a 300 time step long interval.

5.2 Exploratory data analysis

Exploratory data analysis (EDA) was defined by Behrens as “a well-established
statistical tradition that provides conceptual and computational tools for discovering

patterns to foster hypothesis development and refinement” [42].

To begin with, the survival of patients was examined. As presented on Figure 5,
the number of patients that died after the transplantation is less than half of patients who

survived.
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Figure 5: Number of surviving and dead patients

The change in time of blood gas parameters were compared between the two groups with
statistical significance test. The compared samples were created for each blood gas
parameter by rounding the minutes to nearest tens and taking the mean values of these
rounded times. Non-parametric tests were used as the created samples did not follow a
normal distribution. According to the Mann-Whitney test’s results presented on Table 2,
at a 0.05 significance level the null hypothesis can be rejected at all parameters except
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Glu and ClI-, where the higher p-values suggest that the samples were drawn from the

same distributions.

Param Stat p Result
BE 3686.0 2.539238e-10 Different distribution (reject HO)
cHCO3- 36815 2.88706%e-10 Different distribution (reject HO)
Het 33175 2.610381e-06 Different distribution (reject HO)
Lac 13105 3.353643e-03 Different distribution (reject HO)
tHb 31265 1.14776Be-04 Different distribution (reject HO)
PCO2 30450 4.696700e-04 Different distribution (reject HO)
pH 30115 5.089519e-04 Different distribution (reject HO)
MNa+ 17755 3.587802e-02 Different distribution (reject HD)
PO2 1794.0 4.384609e-02 Different distribution (reject HO)
Glu 19415 1.722447e-01 Same distribution (fail to reject HO)
Cl- 22835 B§.861083e-01 Same distribution (fail to reject HD)

Table 2: Mann-Whitney tests results on comparing parameter changes between survived and

dead patients
Figure 6 shows the change of mean values over time in the two groups for the parameters

with a significant (BE) and non-significant (Cl-) Mann-Whitney result.
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Figure 6: Change of BE and CL- in groups of survived and dead patients (y-axis: group
averages at rounded minutes)

The measurements in the two groups were also compared by taking the mean values of
all parameters at different points in time as well. According to the Mann-Whitney test’s
results, with a 0.05 significance level there is not enough evidence to reject the null
hypothesis at any point of time. On Figure 7, the differences between mean values of the

different parameters are plotted for each examined time point. The plotted values were
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calculated by taking the average of survived and dead patient groups for each parameter
at the rounded time points and calculating their difference. Even though this plot shows
big differences at some minutes, p-values of the statistical test suggest that the samples

does not differ significantly at any time.
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Figure 7: Differences of mean values between survived and dead patient groups (y-axis:

difference of group averages at rounded minutes)

The group of patients who passed away was further examined, regarding the
length of time patients survived after the transplantation. Figure 8 shows the distribution

of these patients among the different time categories.
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Figure 8: Distribution of dead patients regarding the time of survival after surgery

To check whether the change of blood gas parameter values differ significantly between
the different groups, again a non-parametric test, the Kruskal-Wallis test was conducted.
Like before, the six compared sample was created by rounding the minutes to nearest tens
and using the mean values of parameters at the rounded minutes. The results show that

except for the Glu and Na+ parameters, the null hypothesis can be rejected at all other

28



parameters meaning the samples created from group averages differ significantly. The
lowest p-values appear at the tHb, Hct and pH parameters.

The blood gas parameters measurements were further explored in terms of
reference intervals, since values outside reference intervals can be dangerous.
Investigating further the differences between the patients who survived and those who
passed away, the percentage of patients with values out of reference interval for each
parameter was compared over time. According to the Mann-Whitney significance test’s
result, the null hypothesis can be rejected and the samples differ significantly for 6
parameters. The changes in the number of patients outside the reference intervals over
time for the parameter with the lowest (BE) and highest (PCO2) p-value are plotted on
Figure 9.
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Figure 9: Percentage of patients outside reference intervals of BE and PCO2 over time

For gaining information about the connection between the different blood gas parameters,
Spearman correlation analysis was conducted with the spearmanr function from SciPy
package. The correlation of each parameter combination was checked individually for
every patient. The results were filtered to only include significantly correlating
combinations using a 0.05 significance level. Then the positively and negatively
correlating parameter pairs were separated and ranked by the Spearman correlation
coefficient and p-value for each patient. Finally, the individual results were summarized

to check how often a pair of parameters has the strongest positive or negative correlation
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among patients. The results on Table 3 show how many times a pair is in the strongest 3
combinations for all patients regarding positive or negative correlation. Looking at the
positive correlations, the combination of cHCO3- and BE was one in the three pairs
having the strongest correlation for 77 patients. The pair of Hct and tHb was among the
three strongest correlating pairs for almost the same number of patients as well. For the
negative correlation, pH and PCO2 was one of the three strongest correlating pairs for far
more patients than any other combination. Based on this table, these pairs mentioned have

the strongest positive/negative correlation in general.

To discover if clusters exist in the data, Principal Component Analysis (PCA) was
applied on the interpolated values. PCA is an old technique used for reducing
dimensionality in a dataset that consists of many correlated variables. The main idea of
PCA is to achieve this reduction by transforming to an uncorrelated and ordered set of

variables, the principal components (PC), while keeping the highest possible amount from

Positive correlation| Num of patients Negative correlation | Num of patients
cHCO3- & BE 77 pH & PCO2 53
Hct & tHb 76 Het & Lac 17
PCO2 & cHCO3- 26 tHb & BE 13
Glu & Lac 11 Hct & BE 12
Na+ & Glu 5 tHb & Lac 12

Table 3: Results of correlation analysis among parameters
the variation of the dataset [43]. The Hopkins test was used for evaluation, which can be
helpful in deciding whether the data follows a uniform distribution, or it has clustering
tendencies. The Hopkins score from pyclustertend package [36] close to 0 indicates that
the data is not uniformly distributed and might have existing clusters, but a higher score
around 0.3 means the data does not have clustering tendencies [36].

PCA was applied on data from different time intervals, but the lowest Hopkins
score was achieved by using an interval for each parameter in which the standard
deviation was highest. The two PCs used together covered 55% of explained variance,
with the BE having the highest loading score in the first and PCO2 in the second
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component. The result is plotted on Figure 10, from which clustering tendencies can be

seen, however no clear clusters can be defined.
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Figure 10: Result of PCA on interpolated data

Furthermore, Functional Principal Component Analysis (FPCA) was tried on each
parameter individually as well, implemented with the fdasrsf package. FPCA is useful
when keeping the patterns in the time-series data is more important than keeping the
absolute variance, as it determines the corresponding functions for underlying patterns
[44]. The results (part of them plotted on Figure 11) indicate that none of the parameters
can be used for defining clear clusters.
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Figure 11: Part of the results from FPCA

The interpolated data about the blood gas parameters was further examined, using
the Predictive Power Score (PPS). The PPS is an alternative correlation metric, that can
detect non-linear and asymmetric relationship between features, even for not numerical
ones. For example, it can be applied for feature selection as PPS shows which features
can be predicted by others, so the ones that do not add new information can be eliminated
[45]. The PPS matrix of the parameters is visualized on Figure 12, where target features

are on the y and predictors are on the x axis.
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Figure 12: PPS matrix of parameters
Darkness of the cells represents stronger predictive power, and relatively dark cells are
present for every target. This means, for each parameter there are some good predictors
among the others. Considering the results of all the different tests, linear and non-linear

relationships can be shown among the blood gas parameters.

5.3 Baseline models

To explore the relationships between blood gas parameters and patterns in the
time-series data, many different questions were investigated. Parameter values of the
patients were predicted using their past values, other parameter values and other patients’
measurements as well. For the first approach, regression models were tried for prediction.
After that, two other directions were explored, time series models and neural networks.
All models were tested on one patient first, because of the limitation of time and
resources, and to see if the algorithms are suitable to be applied on all patients. The

baseline models are summarized in this table:

Model name Model type Predictors Target
Repgression 1 | ExtraTreesRegressor with E-fold 50-time step lagoed values of own other parameters one parameter
ExtraTreesRegressor/
Regression 2 | BavesianRidge / LinearRegression | 50-time step lagged walues of all parameters from other patients one parameter
with K-fold
Time-series AutoARTMA values of own same parameter one parameter
Univariate Neural network 1-time step lagged values of own same parameter one parameter
Multivariate 1 Neural network values of own other parameters one parjamete.r at same
time step
Multvariate 2 Neural network values of same parameter from other patients one pa:ﬁaﬂr; ﬂ;re;t same
Paralell Neural network 1-time step lagoed values of own all parameters all parameters

Table 4: Summary of baseline models applied for each patient
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5.3.1 Linear regression and tree-based models

The goal of regression was to predict values of one blood gas parameter for
patients individually. For one Regressionl model, the predictor variables were the
patients’ own measurements of other parameters. The target variable was a value
measured 50 time steps later, than the values of the predictor variables. With the help of
the PyCaret library, several types of regression models were applied and evaluated on the
one randomly selected patients’ data, using each parameter as target variable. According
to the results, the ExtraTreesRegressor from scikitlearn package model had the best
performance sorting by the R-squared metric. It was applied on every patient’s data using
5-fold cross validation. The performance is evaluated by the root mean squared error
(RMSE) of all trials. The prediction made in the last fold and the corresponding test values
are plotted for some parameters of this patient on Figure 13, with the time steps in test

interval on the x-axis.
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Figure 13: Comparison of predicted and test values for regression model (y-axis: normalized

predicted/test values of parameters)

For the second approach in Regression2 model, the predictor variables were the
measurements of all parameters from all other patients. The target variable was a 50 time
steps late measurement and the best performing regression models were defined as before
too. The best model was ExtraTreesRegressor for the Glu parameter, the BayesianRidge
for Hct and Na+ parameters, and LinearRegression for all other parameters. The

corresponding models were applied using K-fold cross validation on each patient’s data.
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In both cases, the average RMSE of the K-fold validation was collected for train
and test results for each patient, using each parameter as target. Further analysis of these

results is discussed in Section 5.4.

5.3.2 Time series models

Performance of time-series models were tested on a problem, where the goal was
to predict values of one parameter based on the patients’ own past values of that
parameter. Using the PyCaret library [33], many kinds of time-series models were
compared against each other, by being applied on one randomly selected patient’s PO2

data.

According to the results in pycaret, the AutoARIMA model from pmdarima
package had the best performance. This type of model automatically defines the most
optimal parameters for an ARIMA model by conducting differencing tests [46]. The
ARIMA model is a variation of ARMA model, which contains the letter | for ‘integrated’
because it uses differencing to make the series stationary and then fits it to the differenced
data to finally integrate it to provide a model [13]. For training, 200 time steps were used,
and the remaining 100 for testing. Comparison of predicted and test values in the test time

interval (100 time steps) for some parameters of this patient is plotted on Figure 14.
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Figure 14: Comparison of predicted and test values for AutoArima model

From the plots and MSE values it is clear that the predictions do not follow well the actual
values. The reason for this might be the non-stationarity of the series. As an infinite
number of non-stationary structures can exist, Chatfield [13] also emphasized that the

ARIMA model is only capable of describing certain types of non-stationarity series. He
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also stated that relying on automatic ARIMA modelling is complicated and requires

considerable experience.

To learn about stationarity in all time-series, the data for all patients’ each
parameter was tested using the Augmented Dickey-Fuller test [47]. The number of
stationary series each patient has (out of the 10 different parameters) was summarized on
Figure 15.
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Figure 15: Patient count in terms of number of stationary series

According to the plot, more than half of the patients have less than 3 stationary time-
series. Furthermore, in multivariate time-series modelling problems, the presence of non-
stationarity makes the modelling complicated and even achieving stationarity does not
always lead to satisfying results [13]. Because multivariate modelling is necessary for
learning about relationships between the different parameters, another direction was
considered for further modelling.

5.3.3 Neural network models

The next step was exploring neural network models, as they do not have any
criteria about the time series data, like stationarity. For creating MLP models, the
Sequential model and Dense layer type was used from Keras library [21]. The Sequential
model can deal with simple and layer-based problems, taking one input and giving one
output. The Dense is a type of layer where all connections are very deep, meaning the

neurons get their input from all other neurons in the previous layer of the network.

5.3.3.1 Univariate MLP

The first Univariate MLP model was tested on the same problem as the time-
series models, aiming at the prediction of values for one parameter based on patients’

own measurements of the same parameter. The prediction was calculated for each patient
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and each parameter separately. The target variable was the time-series of one parameter
and the predictor variable was a 1 time step lagged time-series of the same measurements.

The input was scaled to values between 0 and 1 with MinMaxScaler [48] estimator

which scales input values with the following transformation:

X —X,;
Xscaled =—7nm*(1_0)+0

X max

60% of the scaled data was used for training the model, the rest for testing. Two
Dense layers were used in the model, one with relu activation function, and the other
layer with linear activation. The model trained for maximum 200 epochs with stopping
early if there was no improvement for 30 following epochs. For adjusting the weights and
optimizing the mean square error as a loss function, the Adaptive Moment Estimation
(Adam) optimizer was used. The model was trained 5 times and the RMSEs of the
separate runs were averaged to give a final metric. Figure 16 shows how the loss of the
training (loss) and test set (val_loss) is changing by epochs during the last 3 run times for

a randomly selected patient’s PO2 data.
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Figure 16: Training and validation loss of MLP model with lagged data
As the values of different parameters were scaled between 0-1 before, the RMSEs
range on the same scale and can be compared. The average RMSE of the blood gas
parameters from averaging the results of each patient are shown on Figure 17 below.
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Figure 17: Average RMSE for parameters using all patients' results

From the plot it is clear that the PO2 parameter had much higher errors, compared to the
other parameters. The average RMSEs from this plot are on Table 5, from which pH

parameter has the lowest average error.

Average RMSE

param

pH

Lac
tHb

Glu

BE
cHCO3-
Het
Na+
PCO2
PO2

0.003737
0.062365
0.071261
0.089170
0.107871
0.115080
0.217398
0.276093
0.349318
4.316950

Table 5: Average RMSEs for Univariate MLP

5.3.3.2 Multivariate MLP

The task for Multivariatel model was the same as for Regressionl model, to
predict values of one parameter, based on the patients’ own measurements of other
parameters. The MLP model had the same layers and optimizer as the previous one, it
was trained for the maximum number of 2000 epochs, and 70% of the scaled input data
was used for training. These settings apply for the following models as well. The predictor

variables for one target value were the values of other parameters at the same time step.

The Multivariate2 model was applied in a way, where the values of one parameter
were predicted based on measurements of the same parameter from all other patients. On
Figure 18, the distributions of the RMSEs are compared for the two variations of this

model.
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Figure 18: RMSE distributions for two variations of multivariate MLP models

From the plot the conclusion is that using a patients’ own other parameters for prediction
IS more accurate in most cases, which is not a surprise. However, the RMSE values of the
model where other patients’ data is used for prediction are not much greater and
predicting the change of a blood gas parameter accurately without any information of the

patient might be more interesting.

5.3.3.3 Multivariate MLP with parallel series

Using a different kind of model at the Paralell model, each blood gas parameter
could be predicted in parallel, based on the patients’ own measurements. A target variable
(vector) in this case consists of a value for each parameter at a certain time step and the
predictor variables were values of each parameter from the previous time step. The plots
on Figure 19 show the comparison of predicted and test values in the test time interval
(120 time steps) for the same patient’s data which was used for the AuUtoARIMA model in

section 5.3.2.
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Figure 19: Comparison of predicted and test values for multivariate MLP model
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The predictions in most cases seem to be close to the test values, surely following them
better than the ones on Figure 14 made by the time-series model. The RMSE values was

collected for this model as well for each patient.
5.4 Baseline model evaluation

5.4.1 Score comparison

In this section, the results are summarized and compared for the models, that were
applied on the time-series for every blood gas parameter of each patient. The target of
these models was always a time-series for one or all (parallel MLP) blood gas parameters
of one patient. These 6 different models were applied for each patient, and the RMSEs
were summarized. Averaging the RMSEs for the 10 blood gas parameters on Table 6 the

Regression2 model is the only one having an average RMSE above 1.

Average RMSE

Regression2  9.157914e+07
Univariate  5.609743e-01
Multivariate2 1.858194e-01
Regression1 1.479383e-01
Multivariate1 1.235471e-01
Paralell 7.575317e-02

Table 6: Average RMSEs based on all parameters for compared models

The poor performance of the Regression2 model can also be seen by plotting the

distribution of test RMSESs among patients on Figure 20.
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Figure 20: RMSE distributions for Regression2 model
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The extreme errors are not surprising, as here the target parameter was predicted only by
using measurements from other patients. As every patient has their own personal
dynamics of biochemical processes in the arterial blood, it is a difficult problem. There
are many outlier errors with huge differences in this regression model, meaning the model
could not find right connections for predicting between different patients. As there are
non-linear relationships in the data, a linear regression model may not be able to capture

patterns.

On the other hand, the Multivariate2 model also predict based on other patients,
but only from the same parameter as the target, and this way had not much higher RMSEs,

than the models where patients’ own data was used.
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Figure 21: RMSE distribution for Multivariate2 model

By looking at the best performing models for the different blood gas parameters
individually, the results on Table 7 show the same as the previous table, that either the

Parallel or the Univariate model is the best.

Best model
BE Paralell
Glu Paralell
Hct Paralell

Lac Univariate

Na+ Paralell
PCO2 Paralell
PO2 Paralell
cHCO3- Paralell

pH Univariate

tHb Univariate

Table 7: Best performing model for each blood gas parameter
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The distributions of RMSEs for these two models range on a lot smaller scale, then for
the Regression2 model. There are still outlier values, but the RMSEs are overall quite

small for each blood gas parameter.
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Figure 22: RMSE distributions for Parallel and Univariate models

The reason for the accurate predictions might be that the patients’ own parameters were
used as predictors and based on the correlation analysis in Section 5.2 some blood gas
parameters have strong and significant correlation. Furthermore, the PPS matrix also
showed that there are some good predictors for each parameters considering all patients’

measurements as well.

In this section the input data, the relationships among blood gas parameters and
many different questions were examined. Several algorithms were tried to build baseline
models, that can give somewhat accurate predictions for the change of blood gas
parameters. All these served as a starting point, to see which directions are worth to be

explored further for interesting and significant results.
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6 Augmented models

Based on the baseline results, the main direction for this section is about
improving and understanding the Multivariatel model, which can predict blood gas
parameters based on each other. Although it was not among the best models when looking
at the parameters individually, it had better average RMSE than the Univariatel model
and it had a more complex task, as it only had other parameters as predictors. After
optimization the Multivariatel model will be further tested to gain a more stable and
reliable estimate of the performance. The feature importance values will be examined as
well to understand the influence of different blood gas parameters on each other and to

see if there were any parameters which would not need to be measured at all.

Another direction is the development of the current most accurate model, the
Parallel model, which predicts all parameters in parallel. The goal here is to examine the
possibilities for predicting further in time, not only for the next time step. In addition, the
performance of the Multivariate2 model is tested and examined more deeply to
understand how well it is capable of learning patterns among the patients’ personal
dynamics. It is also important to find out if there are any blood gas parameters where the

model can give acceptable estimates for completely unknown patients.

Furthermore, during the project additional data became available. The decision
was to expand the current dataset with new patients’ data and apply the knowledge gained
in the previous sections on a bigger dataset in this section. This additional data contained
measurements in a wider time period, even for years in some cases. Unfortunately, the
time of the heart transplantation surgery was unknown, so not all the new data could be
used. Patients who had measurements in the initial dataset too could be extracted as the
new dataset contained those measurements as well. After matching new measurements to
patients in the initial dataset, 48 additional patients’ data became suitable for analysis,

having 142 patients altogether.

6.1 Examining reference intervals

To gain a better understanding and more reliable evaluation of the models’
performance, the MAPE evaluation metric was introduced. This metric was chosen based

on the study written by Wajs et al. [4], where the writers also tried to develop a predictive

42



algorithm for arterial blood gas measurements and trained it with historical samples. In
this study, the writers also used ANN for prediction and predicted the different blood gas

parameters in parallel.

The MAPE is calculated for the original values, not the normalized ones, so
questions about the predicting correctly regarding reference intervals can also be
answered. For example, on Figure 23 the original PCO2 measurements are plotted for a
random patient along with the values calculated by adding (red line) or subtracting (blue
line) the error percentage. The range bounded by the red and blue line is the possible
prediction range. The lower and upper limit on the plot are the boundaries of the reference
interval in which the patient’s PCO2 measurements can be considered normal. From the
plot it can be spotted that in some cases the model would predict that the value is out of
reference interval when it is actually not, or it would predict that the value is in the
reference interval, when it is not considered as normal. False normal (FN) predictions are
obviously worse than False abnormal (FA), as for some blood gas parameters values

going outside reference intervals can lead to undesirable conditions.
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Figure 23: Change of original values and values with error by reference intervals

For example, a low level of PCO2 indicates that the patient is not oxygenating
properly, while a high PCO2 indicates underventilation. At a PO2 below 60 (mmHg) the
patient needs supplemental oxygen, while below 26 (mmHg) the patient is at risk of death
[5]. To see what danger the final calculated errors mean at different blood gas parameters,
each model’s performance is evaluated by checking the number of time steps where it
would give correct, FA or FN predictions regarding reference intervals. These numbers
will be referred as metrics of the prediction range’s correctness and are used in the

evaluation of the Multivariatel and Multivariate2 models.
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6.2 Predicting parameters from each other

6.2.1 Hyperparameter optimization

In this project the goal of HPO was to find the hyperparameter combination for
Multivariatel model that can improve the evaluation scores, so the model can learn the
relationships of blood gas parameters better and give more accurate predictions based on

each other.

6.2.1.1 Tuned hyperparameters and evaluation

As the ANNSs used in the project are simple MLPs with an input an output layer,
the hyper-parameters related to the construction of the model were not changed. The loss
function, activation function and the optimizer were already chosen as well. The focus

was on tuning hyper-parameters related to the optimization and training process.

The learning rate was the first to be optimized, as it is considered to be one of the
most important hyper-parameters. The learning rate defines the step size at which the
weights are updated during training. A large step size makes the training process faster as
the model moves quickly towards the minimum point of the loss function, but there is a
risk of overshooting that point and oscillating around it, without ever converging. A small
learning rate can converge smoothly, but it can take a long time to reach the minimum.
The goal is to find a learning rate with which the model can steadily improve and find the
best weights to minimize the loss function in a reasonable time [23]. By examining the
Multivariatel model’s loss by epoch during training with default learning rate of 0.001,

the large fluctuations suggest instability in the learning progress.
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Figure 25: Training loss by epochs with original learning rate

Certain parameters need to be defined for the sklearn library’s GridSearchCV
function, such as param_grid, which is a dictionary with the names of parameters as keys
and lists of parameters to try as values. The scoring parameter also needs to be passed to
the grid search function if the estimator does not provide a score function. This parameter
determines the evaluation strategy for the performance of the cross-validated model on
the test set. For the first grid search, possible values (0.01, 0.001, 0.0001, 0.00001,
0.000001) for the learning rate were passed to the GridSearchCV funciton. Based on the
results, out of these values the best learning rate is 0.0001. The change of the model’s
training loss by epochs with the optimized learning rate is clearly way smoother than
before. The RMSE in this case decreased from 0.00083 to 0.00051 and the MAPE from
0.089 to 0.058.
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Figure 24: Training loss by epochs with optimal learning rate
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After optimizing the learning rate, different weight initializers were passed to the
grid search function. These initializers set the initial random weights of Keras layers [49].
Out of the eight initializers (uniform, lecun_uniform, normal, zero, glorot_normal,
glorot_uniform, he_normal, he_uniform) the three with the best evaluation score were
glorot_uniform, normal and lecun_uniform. These initializers were passed to the final
grid search along with possible mini-batch and epochs sizes. The mini-batch size defines
the number of processed samples before weight update, while epoch number defines the
number of times the entire training dataset is passed [23]. The best hyper-parameter
combination based on the last grid search results is has normal as weight initializer, 32 as
batch size and epoch number remained 2000.

To compare the overall performance of the original and optimized Multivariatel
models, it was tested with the tuned hyper-parameters for all patients and each blood gas
parameter. This time, a 5-fold validation was used for testing the model, not just a simple
70-30% split of the dataset, as before. For each patients’ every parameter, an average test
RMSE and MAPE were calculated from the 5 folds, along with standard deviation of the
errors. Figure 26 compares the averaged RMSEs for the original and hyper-parameter
optimized models on the upper bar plot, and the averaged MAPEs below. By only looking
at these plots, the conclusion could be that the hyper-parameter optimized model performs

better, as it has lower errors on average.
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Figure 26: Comparison of average error metrics for original and optimized model

However, when looking at the CVs of the error metrics as well on Figure 27, it looks like

the optimized model has errors varying on a wider range for almost every parameter.
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It means that even though the optimized model has lower average errors among all

patients, its performance is less stable with more outstanding errors.
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Figure 27: Comparison of error CVs for original and optimized models

Finally, the correctness of the possible prediction range was compared for the
models on Figure 28. As the prediction range is calculated with an averaged MAPE, it is
not a surprise that the optimized model has larger ranges for correct predictions. Even
though the optimized model would make less FA predictions on average, there are some

parameters where the model would make more FN predictions.
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Figure 28: Comparison of prediction range correctness for original and optimized model

Taking all this into consideration, the model with the original parameters might

be better, because stability is very important for this problem. It must be noted that the
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hyper-parameters were optimized on one patient’s data because of time and resource
limitations, which can explain why the errors have bigger variances. The chosen hyper-
parameters might not be the optimal for some other patients with very different personal
dynamics. It requires further research and different approach to find hyper-parameters

that are optimal in general if such parameters even exist.

6.2.2 Feature importance examination

To understand deeper the relationships between blood gas parameters and
examine their effects on each other, the feature importance of Multivariatel model was

examined.

For this purpose, the SHAP method (SHapley Additive exPlanations) was used,
which is based on cooperative game theory and is used to enhance transparency and
interpretability of models. The SHAP values can help in explaining how different features
affect the model’s output. The absolute SHAP value of a feature shows how much that
feature affected the prediction, while the sign of the SHAP value indicates the
directionality [50].

On Figure 29 the SHAP values are plotted with a beeswarm plot for predicting
pH for a patient. On this plot, the dots represent single observations. The features are
ordered by their effect on the model’s output, so in this case the PCO2 parameter had the
biggest effect on predicting the pH. The color of a point shows how high or low value
that observation has compared to other observations. It seems like both higher and lower
PCO2, tHb and Glu values had a positive impact on the prediction, while for example in
the case of Na+ only high values had positive impact on pH. Low Na+ values decreased
the predicted pH value.
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Figure 29: SHAP values of pH prediction for one patient
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The SHAP values were collected for each patient’s every parameter to see a
general picture of the feature importance. On Figure 33 the average feature importance
among all patients (y axis) is plotted for pH, PO2, cHCO3- and Hct. The directionality of
the impact is represented by colors as well. From these plots general conclusions can be
drawn, such as BE having the largest negative impact on average for pH, or tHb increasing
the most predicted values for Hct. By looking at the plot for every blood gas parameter
(including the other 6 which are not on Figure 30 it is possible to identify 1-3 features for

each target parameter with much greater importance compared to other features.
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Figure 30: Average feature importances among all patients for pH, PO2, cHCO3-, Hct (y-axis:

averaged SHAP values)

The feature importance was summarized with percentage of patients as well. The
most important features in percentage of patients are presented on Figure 31 for each
parameter, where darker cells show bigger importance. From the heatmap it can be
observed that there is always a little percentage of patients for whom a certain parameter
is the most important feature. The only case where a feature was not the most important
for any patient is pH for predicting tHb. Other than that, even though some features had
much stronger impact on average, when looking at patients individually, all features are
most important for someone. Because of this, no features should be excluded from

predictor variables.
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Figure 31: Most important features in percentage of patients

6.3 Predicting further in time

In this section, the Parallel MLP model was developed further to give an output
for more time steps ahead. To achieve this, a multiple parallel input and multi-step output
MLP was used, where the m input vectors, and n output vectors contained values for each
parameter at the previous m or following n time steps. The difference between this model
and the previous ones is that those only predicted for 1 time step ahead, and those
predictions were summarized. However, this kind of model predicts n step further in time,

which can be useful if data is only at hand for 300-time steps.

The model was tried out with different number of input and output vectors, always
using 30% of time steps for testing and 70% for training. First, samples are created by
splitting the data to a three-dimensional array with predictors (X) and another with target
values (Y). The shape of array X is (300, m, 10) and for Y (300, n, 10) as the dataset
contains 300 time steps for 10 parameters. Then both X and Y are split into X_train,
Y_train, X_test and Y_test arrays. These arrays are also three-dimensional, but the first
dimension is not 300. In case of an n length output, the number of times steps that can be
used for training and testing equals 300-n, because when n=100 then 100 time step length
prediction cannot be validated after the 200. time step. In each sample, the input and
output time steps are shifted with one time step. The size of train and test sets for different
length output models is on Table 8.
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Num of
SN OL =1 n=5|m=11n=20|m=1 n=50| m=1 n =100
time Steps
train 70% | 207 196 175 140
test 30% | 88 84 75 60
sum (all-n)| 295 280 250 200

Table 8: Size of train and test sets for multi-step output Parallel models

The RMSEs and MAPEs were calculated for each n length prediction on every
patient’s data. Then the error metrics among patients were averaged for different
parameters and different time steps of the test set. How the average RMSEs changed for
Na+ when the model predicted for different n lengths based on 1 previous input, is plotted
below. Average RMSEs are clearly getting higher when predicting further in time.
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Figure 32: Change of average RMSE for Na+ parameter at different prediction lengths
Based on this, the model was tested with different number of input vectors as well. In this
case, the number of times steps that can be used for training and testing equals 300-n-m.
For example, if m=5 and n=100 predictions can only be validated until the 200. time step
and because more time steps are used as input, predictions can only be made until the
195. time step. A calculation for each case is on Table 9, and the time step (ts) indexing
goes from 0 to 299. For example, when m=5 and n=100, the first prediction is made using
time steps 0-4 and the output is given for time steps 5-104. In the second prediction, the

input and output intervals are shifted with 1 time step, as in the second row of the table.

m=5n =100 | inputts |output ts|m=20 n =100 | input ts |output ts |m=50 n =100 | input ts | output ts
1. 0-4 5-104 1. 0-19 | 20-119 1. 0-49 | 50-149

2 1-5 6-105 2 1-20 | 21-120 & 1-50 | 51-150

3 2-6 7-106 3. 2-21 | 22-121 3. 2-51 | 52-151

195. 195-199|200-299 180. 179-199(200-299 150. 150-199|200-269

Table 9: Example of input and output time steps for multiple input multi-step output Parallel

models (ts = time step)
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The change of average RMSEs is plotted on Figure 33. There are only very small
differences in average RMSEs when increasing the number of input time steps. By
looking at results for other parameters as well, the conclusion is that it does not make
much difference to predict parameters in parallel for next 100 time steps based on

measurements in the previous 1 or 50 time steps.

— m=1n=100
m=20 n=100
0.20 m=50 n=100
w 015
i
=
o=
w
o
m
o 010
]
0.05
0.00
o 10 20 30 40 50 B0
Time step

Figure 33: Change of average RMSE for Na+ parameter at different length inputs

On Table 10, the average RMSEs are summarized for parallel models with
different length outputs. From the table it looks like the RMSE is not always increasing
with the output period length. For example, at BE the average RMSE is lower when

predicting for 100 time steps ahead, than for 50 or 20.

m=1n=5 RMSE m=1n=20 RMSE m=1n=50 RMSE m=1 n=100 RMSE

param
BE 0.055526 0.079567 0.090993 0.074201
PCO2 0.069345 0.101150 0.120205 0.083038
Lac 0.070200 0.112640 0.119679 0.091940
Na+ 0.072200 0.108700 0121129 0.089816
PO2 0.076329 0.132422 0.155444 0.094261
tHb 0.076718 0.009533 0.099007 0.090358
cHCO3- 0.077064 0.103750 0.109279 0.098312
Glu 0.078375 0.103577 0122086 0101321
Hct 0.087019 0.1143861 0.129090 0.094824
pH 0.093431 0.140502 0.159369 0.112355
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On Table 11, the average MAPEs are also summarized for parallel models with
different length outputs. For each blood gas parameter, this average error was below 1%,
even when predicting for the longest length. Here it is also true, that the longest prediction

period does not always mean the highest average MAPE.

m=1n=5 MAPE m=1n=20 MAPE m=1n=50 MAPE m=1n=100 MAPE

param

BE

0.255588

0.293917

0.280922

0.396982

PCO2 0472413 0.587207 0.682396 05642386
P02 0.492506 0.804749 0.932991 0587270
Lac 0.501960 0.725019 0593163 0632349
Glu 0.514393 0.648557 0.698250 0668438
tHb 0.517404 0.614879 0.608209 0571473
Na+ 0.520254 0.664649 0.661103 0627039

CHCO3- 0.562952 0.704528 0670433 0.686677
Het 0.595250 0.754634 0.774756 0.653114
pH 0.631346 0.877223 0.936562 0757105

Table 11: Average MAPE for paralell models with different length output

Based on this, it can be possible to predict blood gas parameters in parallel further in time
with a low average error. The error might, but not necessarily increase with the length of
the prediction period and more input time steps does not guarantee more accurate

predictions.

6.4 Predicting unknown patients

In this section, the Multivariate2 model is examined more deeply, as it could be
interesting and useful if a model could make good predictions without any knowledge of

a patient.

The model itself was not changed, only the way it was trained and tested. At the
previous version in Section 5, it was trained on 70% (first 210 minutes) of all patient’s
data and tested on the remaining 90 minutes. It was tested on each patient’s every
parameter, by retraining every time using all other patient’s data of the same parameter.
This way the target patient was not fully unknown, as their data was used for training as
well. In the new approach, 70% of patients is used for training and 30% for testing,
ensuring that the model is tested on completely unseen patients. So first, the patients were
randomly split to train and test group. Then during training, the model tried to predict all

300 minutes of a random patient in the train set based on the data of the others. After that,
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the trained model was tested on all patients in the test set and the error metrics were

calculated. This process was repeated 10 times, always shuffling the patients before

creating the train-test groups, to achieve more stable results.

The error metrics were averaged for all 10 rounds among the test patients. These

average metrics are in the table below. From this table, the Glu parameter has the lowest

average RMSE and the Na+ the lowest average MAPE.

RMSE MAPE

param
Glu 0247357 5.900671
CHCO3- 0.310293 3606751
BE 0.343108 458.189178
Na+ 0387250 2 683705
tHb 0.414594 3326417
pH 0.419066 4714645
Hct 0428473 7647733
PCO2 0427267 10702048
PO2 0428651 44267492
Lac 0470663 15.796436

Table 12: Average error metrics for Multivariate2 model

However, the standard deviation of the error metrics was also collected to compare the

coefficients of variation (CV) among blood gas parameters. The CVs are plotted below

on Figure 34. for RMSEs and MAPEs separately, representing the relative variability of

error metrics among different test patients.
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Figure 34: Coefficients of Variation for error metrics

Based on the comparison of CVs among blood gas parameters, the highest variability in
RMSEs is at pH and for MAPEs it is at BE. High CV for errors means that when
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predicting these parameters for test patients, the model’s performance is not stable as it
generates widely varying errors and there might be extremely large errors for some test
patients. Considering the order of parameters for different metrics, although it is not the
same, the same parameters are in the first and last group of five. From these plots it looks
like the model can more reliably estimate some blood gas parameters than others for

completely unknown patients.

The average MAPESs were also examined in terms of correctly being in or out of
reference intervals at each time step with the prediction range (adding/subtracting the
average error from the predicted value). There is an example of results for one patient on
Table 13. It shows for example that for PO2, whether the original value was in or out of
reference interval, the prediction range would also be there at each time step. On the
other hand, for PCO2 at 189 time steps the prediction range would be out of reference

interval (FA), while the original value was in.

pt_id param Correct FA FN

24127 PO2 300 0 0
24127 Hct 300 0o 0
24127 Na+ 300 0 0
24127 tHb 300 [
24127 Lac 300 0 0
24127 Glu 219 &1 0
24127 BE 204 98 0
24127 cHCO3- 188 138 0
24127 pH 160 140 0O
24127 PCO2 11 189 0

Table 13: Prediction range correctness metrics for one patient

In the case of this patient there would be no prediction range that could be falsely
estimated to be in the reference interval (FN) when the original values were abnormal.
Averaging the number of Correct, FA and FN scores among all patients, shows similar

results, see on Table 14.
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Correct FA FN

param

Glu 288.746377  10.253623 0.000000

Hect 285268116 14731824 0.000000
PO2 278.739130 23.253623 0.007246
tHb 274449275 25159420 0.391304
Lac 265732809 34.202899 0.014493
Na+ 214658420 85340530 0.000000

pH 205463768 94536232 0.000000

BE 160.340580 139.659420 0.000000
cHCO3- 139.144928 160.855072 0.000000
PCO2 117.927536 182.007246 0.085217

Table 14: Averaged prediction range correctness metrics among patients

From this, the conclusion is that the average MAPE might be the least dangerous in case
of the Glu parameter, where the prediction range is correctly in or out of reference interval
at 289 time steps on average. It looks like the model was not capable of correctly learning
patterns among patients to predict for example BE measurements for unknown patients.
Another important conclusion is that the model does not really give prediction ranges

with falsely normal predicted values, which makes all error ranges more acceptable.
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7 Discussion

In this section, the results of the whole project are summarized, including the
discoveries of the EDA, the modelling, the optimization, and the feature importance
examination. First, the results of the EDA and Multivaritel model are presented, then the

conclusions form the Parallel and Multivariate2 models are summarized.

7.1 Main results

During the EDA, the focus was on finding differences between patients who survived
or died. Based on the statistical test results, significant differences can be observed between
these groups in the change of most blood gas parameters during the observed period. By
examining the two groups in terms of being in or out of reference intervals, there were
significant differences at 6 parameters. Furthermore, significant differences in the change of
almost all parameters were also present between patients with different postoperative survival
lengths. All these differences show that the time series data from blood gas measurements
could be used for predicting postoperative survival length. The goal of the EDA was also to
gain insights about the relationships among blood gas parameters to see if they can be good
predictors for each other. First, the correlation of each parameter combination was examined
and summarized among all patients. Based on this, cHCO3- and BE parameters had the
strongest positive, while pH and PCO2 the strongest relative correlation. Other parameter
combinations also had significant correlation among patients, and the PPS matrix also showed
that for each parameter there are some good predictors.

In the end of baseline modelling, the Parallel and Multivariatel models had the best
average RMSEs. The final focus of the modelling phase was on the Multivariatel model that
predicted one parameter using all the other parameters for each patient individually. This
model produced average RMSEs between 0.0015-0.0025 for all the parameters, and average
MAPESs under 1% for each parameter except BE, where it was 1,65%. The optimized model
had even lower average errors, but with higher variances, so it was less stable when applying
it on all patients. Based on this, it can be concluded that the blood gas parameters can be
predicted from each other with small errors. From the feature importance examination, some
features were identified for each parameter, that have larger impact on the prediction.
However, in the case of all parameters every feature was most important for some (even very

little) percentage of patients, so none of them can be excluded.
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7.2 Additional conclusions

Additional directions for modelling included predicting the parameters in parallel
for different time periods and predicting each parameter for unknown patients based on

other patients’ measurements of the same parameter.

Based on the results from parallel modelling, it is possible to predict blood gas
parameters further in time with similarly low average errors, as in the main model where
the parameters are not predicted in parallel. Also, a conclusion of this direction is that the
error not always grows as the length of the prediction period is increased and using more
input time steps did not always result in lower error. This might be because the most
important part of the input is the closest time step to the chosen output period. Others [4]
investigating similar problems used most recent samples for prediction instead of all

historical data as well.

In case of predicting unknown patients the average RMSEs was higher compared
to the other models. It is not surprising, as in the other two problems the patients’ own
measurements were used and patients can have very different personal dynamics. From
the average RMSEs it seems like error for pH and Glu vary on a wider range than for
other parameters, so to find patterns among patients might be the hardest for these
parameters, while the easiest for PO2 and PCO2. Looking at the average MAPEs, the BE
parameter has errors on a very large range compared to the others, outlier errors for some
patients. Also, with the prediction range the most false normal predictions would be in
the case of BE, cHCO3- and PCO2 on average. On the other hand, it looks like the model
almost did not make any falsely normal prediction, which is a good result because it
means that it can make safe predictions (regarding reference intervals) for completely

unknown patients.

7.3 Further work

While working on this project, I came across many different algorithms,

techniques, approaches, and questions that can form the basis of further analysis.

With a different approach, the model’s hyper-parameters could be optimized in
general for all patients, not just using one patient’s data. This way the performance of the
model could be improved further, and the predictions could be more accurate. In addition,

the hyper-parameters related to the construction of the model could also be tuned and
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different types of neural networks can be tried out as well, even more complex ones like
LSTM.

As there were some significant differences found between groups with different
survival length, predicting the survival outcome or length based on blood gas parameters
could also be an area of further research. Furthermore, other variables about the heart
transplant patients could be included (if possible). If connections could be found between
blood gas measurements and for example personal characteristics or received treatment,
then new features could be introduced to help make blood gas parameter prediction more

precise.
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8 Summary

At the beginning of this report, a brief overview was provided about the challenges
in heart transplantation to show the importance of continuously searching for methods
that can help making predictions about patients’ condition more accurate. How data
mining can help in clinical decision making was presented by reviewing some past
applications of machine learning and statistical methods related to heart transplantation

and blood gas parameter analysis.

The blood test data mining started with the explanation of blood gas parameters
along with other variables in the data set, and by creating a clean and aggregated dataset.
The final dataset used for modelling was created by handling missing values, filtering the
dataset, transforming, and interpolating the values for a certain time interval. Before
modelling, the dataset was examined through the Exploratory data analysis. The data was
visualized with charts to gain different insights, such as the survival ratio of patients, the
differences in the blood gas parameter values between survived and dead patients, or the
percentage of patients with values outside of reference intervals. Correlation analysis
among parameters was conducted and the non-linear relationships were examined as well,
using the Predictive Power Score. Based on the results, there are some significantly
correlating parameter combinations and there are some good predictors for each
parameter among the others. Traditional and functional principal component analysis
were proposed for discovering clusters in the data. According to these, there are some

clustering tendencies, but no clear clusters present in the data.

The EDA was followed by the application of linear regression, tree-based, time
series and neural network models. As most of the data did not have stationarity, which is
a criterion for multivariate time series models, time-series models were finally not
considered for use. The regression and neural network models were applied on every
patient’s data and according to the baseline model evaluation, the Multivariatel and
Parallel models made quite accurate predictions. Based on the score comparison and
considering which problems are more interesting, 3 questions with different MLP models
were chosen for further investigation. The main results showed that parameters can be
predicted from each other with average RMSEs between 0.0015-0.0025 and average

MAPEs under 1%. The feature importance examination showed that although some
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parameters are a lot more important than others, none of them should be left out. Additional
conclusions include that it is possible to predict blood gas parameters further in time with
similarly low average errors, while using more input time steps not always decreases the error.
Also, it proved to be possible to make somewhat good predictions for unknown patients using
data only from others, although the RMSEs were higher in this case. For some parameters the
errors were lower than for others, meaning that in some cases it was easier for the model to
find and learn patterns in the dynamics of different people. Another promising result is that
the number of average false normal predictions this model would make was close to 0 in case
of all parameters. This means that the model would rarely make predictions that are
misleading in terms of reference intervals, so in most cases it could correctly draw attention

to blood gas values that are reaching an abnormal value.

Using these predictive models, ABG tests could be performed less frequently. As
ABG test is one of the most performed tests in ICU, costs could be seriously reduced, and
the limited resources of ICUs could be managed more efficiently. Furthermore, clinicians
could gain insights to expected trends and might be able to prevent life-threatening

conditions too.
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