
Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics
Department of Networked Systems and Services

Detection of network attacks using
ensemble learning methods

Bachelor’s Thesis

Krisztián Adrián Volentér

Advisor
Dr. András Gergely Mészáros

December 8, 2022

Contents

Description of my task i

Összefoglaló ii

Abstract iii

1 Introduction 1

2 Methodology 3
2.1 Tools and platforms used . 4

2.1.1 Used packages . 5

2.1.1.1 Machine learning packages 5

2.1.1.2 Visualization packages . 6

3 Datasets 7
3.1 KDD99 . 7

3.2 NSL-KDD . 8

3.3 CICIDS2017 . 9

3.3.1 Benign . 10

3.3.2 Brute force . 10

3.3.2.1 Patator . 11

3.3.3 DoS/DDoS . 11

3.3.3.1 Slowloris . 12

3.3.3.2 slowhttptest . 12

3.3.3.3 HULK and GoldenEye . 12

3.3.3.4 LOIC . 13

3.3.4 Web attacks . 13

3.3.4.1 Brute force . 13

3.3.4.2 XSS . 14

3.3.4.3 SQLi . 14

3.3.5 Ares . 14

3.3.6 Port scan . 15

3.3.7 Heartbleed . 16

3.3.8 Infiltration . 16

3.4 Errors in CICIDS2017 . 16

4 Preprocessing 19
4.1 VarianceThreshold . 21

4.2 Splitting . 21

4.3 Sampling . 22

4.3.1 Random Undersampling . 23

4.3.2 SMOTE . 24

4.4 Feature elimination . 24

4.5 Preprocessing summary . 25

5 Evaluation 27
5.1 Metrics . 29

5.1.1 Confusion matrix . 29

5.1.2 Averaging techniques for multiclass classification 30

5.1.2.1 Macro averaging . 30

5.1.2.2 Weighted averaging . 31

5.1.3 Accuracy . 31

5.1.4 Average precision . 31

5.1.5 ROC AUC . 32

5.1.6 F1 score . 33

5.2 Hyperparameter tuning . 34

5.2.1 Grid search with cross-validation . 34

5.3 Decision Tree . 37

5.3.1 Fine-tuning . 39

5.3.2 Results . 41

5.4 Random Forest . 43

5.4.1 Fine-tuning . 45

5.4.2 Results . 48

5.5 AdaBoost . 50

5.5.1 Fine-tuning . 51

5.5.1.1 First approach . 52

5.5.1.2 Second approach . 53

5.5.1.3 Third approach . 55

5.5.1.4 Summary . 56

5.5.2 Results . 57

5.6 XGBoost . 59

5.6.1 Fine-tuning . 61

5.6.2 Results . 63

5.7 Summary . 66

5.7.1 Comparison . 68

6 Corrections in CICIDS2017 71
6.1 Preprocessing . 71

6.2 Fine-tuning summary . 74

6.3 Evaluation summary . 75

7 Final thoughts 77

Acknowledgements 79

List of Figures 82

List of Tables 83

Bibliography 83

HALLGATÓI NYILATKOZAT

Alulírott Volentér Krisztián Adrián, szigorló hallgató kijelentem, hogy ezt a szakdolgozatot
meg nem engedett segítség nélkül, saját magam készítettem, csak a megadott forrásokat
(szakirodalom, eszközök stb.) használtam fel. Minden olyan részt, melyet szó szerint,
vagy azonos értelemben, de átfogalmazva más forrásból átvettem, egyértelműen, a forrás
megadásával megjelöltem.

Hozzájárulok, hogy a jelen munkám alapadatait (szerző(k), cím, angol és magyar nyelvű
tartalmi kivonat, készítés éve, konzulens(ek) neve) a BME VIK nyilvánosan hozzáférhető
elektronikus formában, a munka teljes szövegét pedig az egyetem belső hálózatán keresztül
(vagy autentikált felhasználók számára) közzétegye. Kijelentem, hogy a benyújtott munka
és annak elektronikus verziója megegyezik. Dékáni engedéllyel titkosított diplomatervek
esetén a dolgozat szövege csak 3 év eltelte után válik hozzáférhetővé.

Budapest, 2022. december 8.

Volentér Krisztián Adrián
hallgató

Description of the task

The deflection of network attacks is a central question of modern computer networks. An
important element of this process is performed by the Intrusion Detection System (IDS).
A fundamental weakness of classic, signature based IDS solutions is that their application
against unknown attacks is limited. Anomaly based IDSs (AIDS) offer an answer to this
problem, which is based on the detection of abnormal traffic patterns. AIDSs are often
based on machine learning methods. Among them are the ensemble based methods, which
are widely popular due to their robustness and high performance both in IDSs and in other
fields. The task of the student is to recommend and implement an ensemble based machine
learning method which can be used for the efficient detection of network attacks.

As part of the above task, the student has to solve the following subtasks:

• Introduce the most important ensemble methods and give a short summary of the
literature of ensemble methods proposed for intrusion detection and the network
datasets used for their testing.

• Propose and implement an ensemble based method for intrusion detection.

• Choose and preprocess datasets that can be used to sufficiently test the intrusion
detection method.

• Test the proposed intrusion detection method and evaluate it by comparing its per-
formance to other solutions.

• Document the work.

i

Összefoglaló

Az egyre komplexebb és letisztultabb támadások miatt az illetéktelen hálózati behatolá-
sok észlelése egyre fontosabb szerepet tölt be napjainkban. A támadóknak több eszköz
áll rendelkezésükre, mint a cégek hálózatának biztonságával foglalkozó alkalmazottaknak.
A hálózatok ellen irányuló támadások egyik rejtett veszélye, hogy sok esetben bárki ál-
tal kivitelezhetőek, mert az egyes támadó eszközök nem feltétlenül igényelnek mélyreható
szakmai tudást. A folyamatban lévő támadások időben való észlelése és megakadályozá-
sa elengedhetetlen fontosságú a hálózatok alapszintű védelméhez. Az IDS-ek (Intrusion
Detection Systems, magyarul: Illetéktelen hálózati behatolást jelző rendszerek) képesek
észlelni az egy-egy hoszton, vagy az egész hálózaton történő rosszindulatú eseményeket.
Ebben a dolgozatban az anomália-alapú IDS-ekkel kísérleteztem, mivel forradalmi megol-
dást kínálnak a gépi tanulás támadások észlelésére való felhasználására. A szignatúra-alapú
módszerekkel ellentétben ezeknél nincs szükség előre összeállított szabályrendszerre, ame-
lyek mentén a normális viselkedés meg van határozva. Egy másik előnyük, hogy képesek
detektálni a zero-day támadásokat is, amire az előbbiek nem alkalmasak. Dolgozatomban
be szeretném mutatni a gépi tanulás ilyen környezetben való felhasználását. Különböző
klasszifikációs modelleket implementáltam számos ensemble alapú módszer bemutatásá-
ra és összehasonlítására. Az ehhez felhasznált gépi tanuló módszerek a Random Forest,
AdaBoost és az XGBoost voltak. Az eredményeim további árnyalására ad lehetőséget a
szintén bemutatott, egy döntési fán alapuló, módszerem. A realisztikus hálózati környezet
szimulálására a CICIDS2017 adatsort használtam, amely sok, változatos karakterisztikájú
támadást tartalmaz. A modellek igényeihez igazodván szükségessé válik az adatok előfel-
dolgozása is. Ezen folyamat segítségével a modelljeim futási idejét is csökkentettem. A
munkám során szembesültem az előbb említett adatszet bizonyos hibáival. A javított vál-
tozatának felhasználásával készített modellekel bemutatom, hogy az általam használt gépi
tanuló algoritmusok szignifikáns javulást mutatnak az eredeti adaton végzett mérésekhez
képest. Ez az eredmény még jobban legitimálja az anomália-alapú IDS-ek használatát.

ii

Abstract

Intrusion detection on networks is gaining importance, which is a result of the ever-evolving
sophistication of attacks. Today, attackers have more tools for compromising the network
of a company than an employee has for defending it. Also, attacking tools might be
used successfully with only a low amount of knowledge about the basis of attacks. The
defenders always have to be aware of any ongoing attacks on the network and try to
mitigate them. IDSs (Intrusion Detection Systems) come as great help in these defensive
approaches as they can detect malicious behaviour on hosts or on the network as well. In
this thesis, I experimented with the anomaly-based IDSs, which grant a revolutionary way
of using machine learning methods for the detection of attacks. They can be used without
exact rules to be predetermined unlike in the case of the signature-based approach. Their
benefits include the possibility of detecting zero-day attacks, which cannot be detected by
signature-based IDSs. In the thesis, I would like to show the power of machine learning
for this use-case. I have implemented several classification engines based on ensemble
learning models, which are Random Forest, AdaBoost, and XGBoost. I also presented
the performance of a single Decision Tree as a comparison, which shows the improvements
ensemble learning makes. To simulate a real network environment I used the CICIDS2017
dataset as it contains various types of attacks to demonstrate the classification success
of my models. Datasets usually need to be preprocessed in order to fit the preferences
of the chosen model(s), moreover, I used it to reduce the time complexity of my models.
Later in my work, I got to know some shortcomings of this dataset and I proposed other
models using a corrected dataset. The results on it showed a significant improvement,
which legitimates the use of anomaly-based IDSs further.

iii

Chapter 1

Introduction

This thesis is influenced by the conditions of the current fast-growing technological envi-
ronment, where we face newer and newer difficulties, when trying to protect our devices
and personal data from intruders, e.g. as individuals or companies. The race in the IT field
forces the developers to work in a hurry, leaving vulnerabilities to be found by a friend
or a foe, because products must enter the market as quickly as possible. The growth of
IoT market share gave another attack surface for intruders, because these devices tend to
have low security measurements built in. To improve our chances against cyber criminals,
intrusion detection has become a popular topic in the last decades.

Intrusion is a kind of security incident, when the attacker exploits software or system
vulnerabilities and gains access to the system or escalates privilege without permission of
the authorization policy. An Intrusion Detection System (IDS) [5] is defined as a hardware
or a software, which looks for potential threats in network traffic and is able to respond to
them, while reporting them to a supervisor. In cyber security systems, we use it alongside
firewalls and antiviruses to make a highly efficient combination of defense.

Although IDSs are the products, they differ in some aspects of implementation. The first
aspect is the network location where we use it. When we want to monitor processes and
file activities associated with a specific host, we use HIDSs (host-based IDSs) and when
we want to monitor the traffic through network devices, we use NIDSs (network-based
IDSs). IDSs are sending alarms to the operator in case of an attack – as they are for the
detection of an attack – but there are IPSs (Intrusion Prevention Systems), which are also
blocking traffic based on malicious characteristics.

The core of the system which makes the decisions is another differentiator. In this case
there are three variations: AIDS (anomaly-based IDS), MIDS (misuse-based IDS), and
hybrid IDS. The misuse- (or signature-) based technique uses the signatures of known
attacks for detection. The main disadvantage of this method is, that it detects only
previously known attacks, however, with frequent updates on the attack database it can
be a legitimate solution. It is the current industrial standard, when it comes to using
these kinds of systems. In my work, I experimented with the anomaly-based method,
which models the normal network traffic and detects the possible attacks as anomalies
which are deviations from the benign behavior. This technique has a lot of potential
because it can detect zero-day attacks, while making signatures of them for misuse-based
databases. Its main drawback is the high number of false positive cases.

The focus of this thesis is on measuring whether ensemble methods are viable solutions for
intrusion detection. My goal is to get accurate predictions on new attacks with keeping

1

the false negative cases as low as it is possible. The above mentioned false positive cases
will be considered with lower priority.

The methodology used for this thesis is outlined in Chapter 2. Datasets are significant
parts of IDS researching, thus I will detail the use of them in Chapter 3. The main
dataset for this thesis will be CICIDS2017 [59]. In addition, I will detail its errors and the
proposed dataset, which makes corrections on it. The preprocessing of CICIDS2017 will be
described in Chapter 4 with the theoretical background of this procedure. In Chapter 5,
I will specify the metrics used for the evaluation of classifiers and then I will measure
the performance of a single Decision Tree and of several chosen ensemble methods with
them on CICIDS2017 dataset. I will use similar approach to the later outlined methods in
Chapter 4 and Chapter 5 for the improved dataset in Chapter 6. Lastly, I will summarize
my work and make recommendations based on my results in Chapter 7.

2

Chapter 2

Methodology

In this chapter, I would like to summarize the methodology used for this thesis. As I have
mentioned earlier, I used machine learning methods as the predictive core of the IDS.
Notedly, I have implemented only the detection engine, as the main focus of my project
is anomaly detection.

The data had to be concatenated and analyzed in the first place to get a deeper un-
derstanding. This included, e.g. getting a grip on the data types in different columns.
Based on this information and knowing the dimensionality of the dataset, I could tell
what preprocessing steps might be required.

The next step was the actual preprocessing procedure, which is highly dependent on the
behaviour of the chosen classifier: in our case Decision Tree and ensemble methods are
used, so e.g. normalization is not needed because they are all based on trees and the
construction of trees is insensitive to this kind of alteration. The dataset should also be
split into pieces representing training, validation and testing segments. Training dataset
is for teaching the given model with the patterns of the dataset. Also, fine-tuning of
hyperparameters of the ML model can be achieved with its repeated training on the
training set – or on a subset of it (referred to as fine-tuning dataset in the following) –
and evaluation on validation dataset with the constant changing of the parameter set in
each step. This process will be further detailed in Section 5.2.

Before any fine-tuning and evaluation happened on the train subset, I had to use sampling
because of the imbalance of the dataset (see Section 4.3). Feature elimination is also
required because there are too many columns and they are just slowing down further
procedures, while not making evaluations more accurate. The used procedure for feature
selection and elimination is described in Section 4.4.

After each preprocessing and fine-tuning part, the learning process of the classifier can be
measured by the validation subset. This process has great importance because machine
learning algorithms can be overfitted or underfitted. An overfitted ML model performs
well on the training data but generally poorly on the validation subset. A classifier is
underfitted if it achieves poor scores either on training and validation data. After achieving
a predetermined goal on the validation dataset, the test data were evaluated by the model.
This predetermined goal can be, e.g. to reduce misclassifications to an extent and/or to
reduce evaluation time. The validation set was used for checking the outcome of each
preprocessing step. After preprocessing, the validation data were used to validate classifiers
with fine-tuned parameters. The test set was only used for the final evaluation in each
case.

3

In gereral, if the model works well for the use-case, then further adjustments are not
necessarily needed. Otherwise, new settings should be tried on the classifier starting again
from the end of preprocessing. If neither of these helps, a new model should be tried with
the same methodology. The visualization of the descripted process is shown in Figure 2.1.

Figure 2.1: The visulization of the proposed methodology

2.1 Tools and platforms used

The main environment I used for this thesis was Jupyter Lab [26]. It is a powerful tool
for data science and machine learning because it can run multiple IPython files (ipynb
extension) in different kernels. It grants opportunity to work with several file types. It is
also modular and can be fully customized, which gives the possibility to make extensions
for it. I used several of them, e.g. the GitHub extension1, which proved to be helpful
in version control. This way I could share my weekly process with my advisor. Also,
I developed an extension2 for the platform using TypeScript and React, which can run
IPython cells by a specific tag. The layout of this extension can be seen in Figure 2.2.

Using IPython makes work easier, because of its cellular design. Every cell can be executed,
stopped and controlled separately. Their usage can be extended inside Jupyter Lab by
‘magic functions’, e.g. %time can measure the run time of a line and %%time written at
the start of a cell can measure the run time of the whole cell. Also, this cellular design
lets the users make the code more readable by summarizing it into blocks. IPYNB files let
developers make, e.g. Markdown cells, which can provide description for the cells below
and help to get a clearer interpretation of the workflow.

1Jupyter Lab, Git extension https://github.com/jupyterlab/jupyterlab-git (Accessed: 2022-12-
03)

2Jupyter Lab, Select by Tag extension https://github.com/volenterk/jupyterlab_selectbytag (Ac-
cessed: 2022-12-03)

4

https://github.com/jupyterlab/jupyterlab-git
https://github.com/volenterk/jupyterlab_selectbytag

Figure 2.2: The dropdown can be used to select the tag – by its
name – and the button on its left side selects and runs
those cells, which have the tag

I worked in 2 separate Jupyter Lab environments. One of them was installed on Windows
10, and it was used for CPU intensive processes. The other one was set up inside WSL 2
(Windows Subsystem for Linux version 2) within the Windows 10 host. It was required
because I used GPU acceleration for one of the models and the GPU could be accessed
within WSL.

2.1.1 Used packages

There are several standard packages that are included in almost every machine learning
project, which are the following: numpy, pandas and matplotlib. Numpy [35] is a mathe-
matical library containing different efficient arrays and functions. Pandas [1] is famous for
its data structures (Series and Dataframe) and the ability to widely access and modify
them. Matplotlib [31] is a standard visualization tool, which can be used to plot, e.g.
2 and 3 dimensional scatter plots or bar plots. The more detailed description of these
standard packages is not in the scope of this thesis.

2.1.1.1 Machine learning packages

For machine learning libraries, there is a high variety to choose from. There are packages,
which require more in depth knowledge from the users. On the other hand, there are ones
which are preferred by the beginners of this field. I chose to work mainly with scikit-
learn [57] as it is a useful package for users of any level of expertise written in Python.
It is also widely used within IDS related papers. I consider this as a beginner friendly
package, which is due to the simplistic approaches its developers followed, its detailed
API and code examples provided for the methods within. It contains techniques for al-
most all parts of machine learning, including e.g. data preparation, data manipulation and
implementations of machine learning models. The used models from this package were
DecisionTreeClassifier (see Section 5.3), RandomForestClassifier (see Section 5.4)
and AdaBoostClassifier (see Section 5.5). I also used GridSearchCV (see Section 5.2)
from scikit-learn and some other less important classes and functions, which are not spec-
ified here.

Another machine learning package, which was used in my thesis is xgboost [69]. It was
made by DMLC (Distributed (Deep) Machine Learning Community) and is an optimized
library for gradient boosting. From this package, I used the XGBClassifier model, which
is an efficient and versatile model. It contains a full set of tools for machine learning with
a high level approach. It can be customized to a great extent, which makes it usable
in different scenarios. This package also has efficient matrices to store the data and can
utilize GPU computation, while scikit-learn only supports CPU.

5

The last machine learning package I used was imbalanced-learn [24], which provides meth-
ods for better classification of imbalanced datasets. Several of these methods are to
manipulate datasets but there are also machine learning models from scikit-learn, ex-
tended with the controlling of imbalance. From this package I used Pipeline, SMOTE
and RandomUnderSampler. The imbalanced-learn and xgboost packages follow the API
conventions in scikit-learn, which make them more easy to understand for beginners.

It is important to note that I used the parameter names available in the packages when
describing these classifiers (see Chapter 5) and this was a purposeful choice. If the notation
of the parameter was a letter from the greek alphabet, I used the written out form of it,
e.g. I used lambda instead of λ. Sometimes I used the parameter names next to pure
mathematical notations, which was also a purposeful choice because I wanted to present
these models as simply as possible.

2.1.1.2 Visualization packages

The visualization of the different phases makes the results more digestible. For this purpose
I tried and used several useful packages over matplotlib, which was mentioned previously.
One of them was seaborn [3], which makes statistical visualization easier than matplotlib
– which is one of its dependencies – with out-of-the-box solutions. It includes several more
plot types, which provide more impressive visualization tools.

Another visualization package used in this thesis is umap-learn [68]. UMAP is the short
for Uniform Manifold Approximation and Projection for Dimension Reduction. I used
this package to visualize approximate relations between categories in my datasets. It is an
interesting – and also an extensively researched – topic to visualize higher dimension of
data into only 2 dimensions. There are also multiple alternative approaches for this prob-
lem, however, I chose this because of its promising view in data science. It is also a novel
method, which aims to provide a faster alternative for t-SNE (t-Distributed Stochastic
Neighbor Embedding) and PCA (Principal Component Analysis) [32].

The last visualization package used was Plotly, more precisely Plotly Express [39]. While
the former is a package with highly customizable plots, Plotly Express provides an easier
API to it. It automates the generation of several plot types by providing only the sufficient
inputs. Users can efficiently make informative plots with it.

6

Chapter 3

Datasets

IDS researching would be impossible without publicly available datasets. For different
use-cases, universities and organizations made comprehensive databases freely accessible,
which come as great help. The terminology used for the structure of datasets is the
following: the columns are called features and the rows are referred to as samples. A
feature is an aspect of a sample, which can be numeric (for example received bytes), or
categorical (for example the used protocol). A sample of a dataset is an entity, that can be
fully or partially described by the features of the dataset. The features can be abstracted if
the authors made steps with a preconception so that a complex feature helps summarizing
raw columns and makes detection easier.

A drawback of the popular IDS related datasets is the high number of samples, which
causes a problem when comparing related papers because authors may/will use different
subsets. The reason is that cloud-based ‘unlimited’ resources are not cheap to access. The
other problem is that – according to my experience with reading IDS related papers and
replicating them in the previous semesters – subsetting can cause unlikely scenarios, so
unfortunately the table can be tilted for better results. Although the size of the datasets
would not be a problem in itself because real-life scenarios require as much relevant data
as it is possible to gather.

For this thesis, I chose the CICIDS2017 [59] dataset as it is widely used by researchers of
intrusion detection. To highlight the benefits of the dataset, I would like to introduce a
dataset that I have used in my semester project which is NSL-KDD [34]. But first – to
present the NSL-KDD dataset – KDD99 [27] should be described, which is its predecessor.

3.1 KDD99

This dataset was made from the well known DARPA dataset – which is a raw TCP/IP
dump – by extracting features from it. The data was created for a challenge called KDD
Cup in 1999, and it is the most cited data in the field of IDS research. It contains 4 weeks
of network captures from the DARPA dataset. During the construction of the network
captures, there were attack-free periods and periods when attacks occurred in the network.
It has features derived from pcap and some additional ones abstracted with the thorough
analysis of the raw packet capture. Although it is widely used, it has downsides such as
duplicate rows, which are not containing new information and are biasing the evaluation.
70% of the training and 75% of the test data is redundant based on the analysis done by
Tavallaee et al. [65]. Another drawback of this dataset is the unrealistically high number

7

of attacks compared to benign ones. Although it is outdated by now, the dataset was the
pioneer of IDS related datasets.

3.2 NSL-KDD

As mentioned, the NSL-KDD datasets were created from selected records of KDD99 (see
Section 3.1) providing more realistic measurement results. Redundant samples were re-
moved from the original KDD99 dataset and the number of samples were decreased to
provide more practical data [65]. It has separate datasets for training and testing pur-
poses. In my semester project I mainly used the training segment to evaluate machine
learning algorithms because there is a high deviation between the training and testing
datasets. There are 14 new attack types compared to training [38]. As I have men-
tioned in Chapter 1, the idea behind anomaly-based models is to detect novel attack
types but I found this disparity to be overwhelming for the classifiers I used (DBSCAN
and DecisionTreeClassifier). Another problem is that it contains out-of-date attacks,
which is because the original TCP/IP dump was made in 1999. These attacks are shown
in Table 3.1.

Dataset Attack types
train back, buffer_overflow, ftp_write, guess_passwd, imap, ipsweep, land,

loadmodule, multihop, neptune, nmap, normal, perl, phf, pod,
portsweep, rootkit, satan, smurf, spy, teardrop, warezclient, warezmas-
ter

test apache2, back, buffer_overflow, ftp_write, guess_passwd, httptunnel,
imap, ipsweep, land, loadmodule, mailbomb, mscan, multihop, named,
neptune, nmap, normal, perl, phf, pod, portsweep, processtable, ps,
rootkit, saint, satan, sendmail, smurf, snmpgetattack, snmpguess, sqlat-
tack, teardrop, udpstorm, warezmaster, worm, xlock, xsnoop, xterm

Table 3.1: The attack types in NSL-KDD train and test datasets

I categorized these attacks in order to make results easier to interpret. 5 groupings could
be made which are the following: Normal, DoS, Probe, U2R, and R2L. Denial of Service
(DoS) attacks are covered in Section 3.3.3. Probe attacks are for the reconnaissance of
the network, which includes sending network scanning or security testing packets to get to
know the weakness(es) of the IDS. When intruders gain access to a remote system as user
in a shell or telnet session and then achieving super user permissions is called User to Root
(U2R). Gaining unauthorized access to a server is Remote to Local (R2L). Last but not
least, in the Normal group I have summarized benign samples. The methodology I used
for NSL-KDD was to concatenate the Normal group to each attack group. This transforms
the multiclass classification into 4 binary classification tasks. The resulting datasets were
evaluated separately. The classifiers showed good performance on the validation data with
Decision Tree, however, because of the amount of new attack types, this classifier was not
successful on the test data. The DBSCAN performed reasonably only on the validation
set of the DoS grouping.

8

3.3 CICIDS2017

The Canadian Institute for Cybersecurity (CIC) released this dataset in 2017 for intrusion
detection purposes [59]. It was produced from pcap files recorded over 5 days with using
their network attack analysis tool named CICFlowMeter1. This tool works by replaying
the captured traffic and then extracting flow-specific features out of it. Several criteria were
used in order to create a valuable comprehensive dataset [18]. It was recorded on a real-
life based topology, containing a variety of operating systems and network devices. The
testbed architecture is shown in Figure 3.1. This dataset contains benign and attacking
behaviour collected from victim-side and attacker-side traffic and stored on a dedicated
storage server. The dataset is labelled, which makes this dataset available for supervised
learning. The communications are present within and between internal LAN. Internet
communication is represented as well by using common protocols: HTTP, HTTPS, FTP,
SSH, and email protocols. The dataset contains common attacks based on a 2016 McAfee
report, which will be detailed later. In the attacking periods, memory dumps and system
calls were logged as well. The resulting dataset has more than 2.8 million samples and 80
flow features.

Figure 3.1: The testbed architecture for CICIDS2017 dataset [59]

The main reason behind choosing the CICIDS2017 over NSL-KDD is that I wanted to
introduce and use a more recent dataset in this thesis, which is also popular amongst
researchers of IDSs. There are 8 years between the two datasets, which results in CI-
CIDS2017 having more modern attack scenarios. Also, CICIDS2017 consists of several
pcap files (see Section 4), from which the researchers can choose to include in their work.
On the other hand, NSL-KDD has 2 separate datasets for training and testing purposes,
which constrains its usage if we use it as it is intended. The training and testing sets
of NSL-KDD have high deviation for the used attack types, which results in poor scores
and provides a less accurate (i.e., more pessimistic) attack scenario than CICIDS2017.
Moreover, CICIDS2017 has more rows than NSL-KDD, which is good for training models
accurately as some datasets lack a sufficient amount of samples. Besides the promising
features of CICIDS2017 dataset there are also downsides, which will be further detailed
in Section 3.4.

In the following sections I will write about the categories within the CICIDS2017 dataset
with the purpose of detailing the actual threats which were used by the creators of the

1The original CICFlowMeter GitHub repository https://github.com/ahlashkari/CICFlowMeter (Ac-
cessed: 2022-12-03)

9

https://github.com/ahlashkari/CICFlowMeter

dataset. It is not usual for IDS related papers to conclude details like these, however, I
think that readers – and also researchers – should know about the different behaviours
represented in the data for a deeper understanding. I am also dedicating these sections to
my personal interest in cybersecurity. The tables (e.g. Table 3.2) contain the occurrences
of the attacks – based on the time intervals provided by the creators – within the recording
of the dataset, source, victim, and the type in each section [25]. In Figure 3.2 a UMAP 2D
plot can be seen consisting of 100000 samples from the dataset made after the preprocessing
stage (see Chapter 4). Based on this figure the attack categories seem to separate well,
which usually indicates that the classification outcome will be good. It is important to
note that this is just an approximation of the high dimensional data.

Figure 3.2: The 2 dimensional plot of the CICIDS2017 dataset

3.3.1 Benign

Benign category represents the normal behaviour in IDS datasets. In this case the samples
were generated with a system called B-Profile [59]. It mimics human interactions with us-
ing machine learning and statistical analysis as it is claimed in the work of Sharafaldin [58]
et al. Benign behavior was generated and captured one whole day, July 3, 2017.

3.3.2 Brute force

Brute force is otherwise known as exhaustive key search, where the attacker tries all
possible passwords or passphrases to get access to a service using trial-and-error. This

10

attack can be done in multiple fields, e.g. hash cracking, login form, and service brute
forcing. It can be done on services, e.g. by rule-based passwords, general and personalized
wordlists. The automated probings are targeted (Table 3.2), meaning that there is only
one host and one service at a time on which the attack is performed.

Date Attacker Victim Attack type
July 4, 2017 9:20-10:20 a.m. Kali Ubuntu16 WS FTP-Patator
July 4, 2017 14:00-15:00 p.m. Kali Ubuntu16 WS SSH-Pataror

Table 3.2: Brute force attacks

3.3.2.1 Patator

Patator [37] is a multi-threaded tool written in Python. It aims to be more reliable and
flexible than Hydra, Medusa, Ncrack, Metasploit modules, and Nmap NSE scripts. The
modular design supports users to write their own brute force segments, though it has more
than 30 methods built-in. The creators of the dataset used ftp_login module, which can
brute force the credentials of an FTP service and ssh_login, which does the same but for
an SSH service.

3.3.3 DoS/DDoS

Denial of Service (DoS) [40] attacks are making a service inaccessible with flooding or
sending information to it that triggers a crash. Nowadays, attacks sending huge loads of
data from a single point are not effective due to the modern load balancing procedures
and improved hardware capabilities on network devices. A more effective strategy is to
let multiple systems send malicious traffic to the same target. These attacks are referred
to as Distributed Denial of Service (DDoS). The mitigation of these attacks is usually not
developed enough to stop malicious actors from making a service outage, however, there
are great methods and techniques for defensive purposes today. Nonetheless, it is a fact
that attackers have more tools to disrupt than defenders have to prevent, meaning that all
possible countermeasures should be considered while trying to make our networks more
robust to these attacks. A fundamental approach is to test our systems with the eyes of a
hacker by using tools to see how big the load is that our devices can handle before the point
of crisis. In my work a theoretical IDS tries to classify these attacks by flow descriptive
features. The basic procedure could be to block source IPs when a DoS or DDoS flow
happens. This is a good solution for simpler cases when the attacking sources – based on
IP addresses – stay the same during attacks. However, i.e. against a vast botnet, which
constantly changes attacking pool, this method alone will not be sufficient. The DoS and
DDoS attack periods are listed in Table 3.3.

Date Attacker Victim Attack type
July 5, 2017 9:47–10:10 a.m. Kali Ubuntu16 WS DoS Slowloris
July 5, 2017 10:14–10:35 a.m. Kali Ubuntu16 WS DoS slowhttptest
July 5, 2017 10:43–11:00 a.m. Kali Ubuntu16 WS DoS Hulk
July 5, 2017 11:10–11:23 a.m. Kali Ubuntu16 WS DoS GoldenEye
July 5, 2017 14:00-15:00 p.m. 3xWin 8.1 Ubuntu16 WS DDoS LOIC

Table 3.3: DoS and DDoS attacks

11

3.3.3.1 Slowloris

Slowloris [62] is a protocol-based exploitation, which was initially released 17 June 2009.
It is a very sophisticated attack because one could cause harm without huge loads of
traffic [60]. When browsing, we send GET requests (HTTP protocol) to get resources
from the webserver to load on our client side. The brilliant trick comes into play when
we think about the closing of one request: we have to put two new line characters to the
end of a request. The creator(s) of the original attack exploited this behaviour by making
hundreds of GET requests to randomized endpoints of the target, while not closing them.
An endpoint is e.g. /index.html of the target webserver, which usually contains the home
page. In this case s.send_line(f"GET /?{random.randint(0, 2000)} HTTP/1.1") was
used for the requests. The method constantly sends random numbers on each started
request as some sort of a keep-alive signal for the server to not close the connection. It
also uses a random pool of UAs (User-Agents), which makes this attack more hidden.
When a thread is freed, Slowloris tries to get that thread too. This attack targets mostly
Apache webservers because these servers allocated new threads for each request by design.
Apache webservers are quite common to these days based on Shodan statistics2, meaning
that this attack can be present nowadays when the Apache server uses mods that are
not thread safe. It would be a relatively good fix for the problem to limit the maximum
number of threads for an IP address. A simple Python implementation can be found on
GitHub which is straightforward to use but it has only a few parameters to set.

3.3.3.2 slowhttptest

The slowhttptest tool [61] contains multiple DoS attacks via prolonged HTTP connections.
It has 4 test modes, which are Slowloris (default), R-U-Dead-Yet, Apache killer, and Slow
Read. As the paper does not clarify the mode used for this tool, I presume that Slowloris
was used again. However, it would not make that much of a difference – in my opinion – to
make separate classes for them, but the power of this tool is that it is highly configurable.
For example, the number of connections, interval between keep-alive data, and even proxy
options are accessible for the users.

3.3.3.3 HULK and GoldenEye

HTTP Unbearable Load King (HULK) [23] is a tool to produce random unique requests
and send them in a big load to the targeted webserver making it inaccessible for legitimate
users. It obfuscates the source client with setting illegitimate user agent values [20]. The
referrer is also modified to major sites. To bypass Content Delivery Networks (CDNs), this
method uses the no-cache option for the Cache-Control HTTP header field. This forces
the server to complete the request without CDN caching mechanisms. The original tool
was written in Python with giving separate thread for each request. A GitHub repository
can be found with a GoLang re-implementation, which uses goroutines to make better use
of the resources.

GoldenEye [60] works almost the same way as HULK. It uses randomized parameters for
the requests and also bypasses CDNs. Basically, these two attacks are exploiting keep-alive
and no-cache, when making requests.

2Shodan query for Apache web servers https://www.shodan.io/search?query=Apache+httpd (Ac-
cessed: 2022-12-03)

12

https://www.shodan.io/search?query=Apache+httpd

3.3.3.4 LOIC

Low Orbit Ion Cannon (LOIC)3 is a binary written in C#. It also has a JavaScript
implementation which enables clients to run attacks from their browsers. It sends TCP,
UDP or HTTP packets to the target webserver [33]. However, it is found that one attacker
is not enough for an attack to succeed. This is why it is used in DDoS context here too. It
was originally deployed by the Anonymous hacktivist group in Project Chanology, where
people created a botnet with volunteers to attack the targeted infrastructure with this
tool.

3.3.4 Web attacks

Web attacks [28] are high variety threats against websites. These attacks occur on a
daily basis because the popularity of web applications is on the rise. This comes hand in
hand with ever evolving attacking possibilities, which can be exploited by cybercriminals.
There are also tools that even a beginner could use for successful attacks. The terrifying
fact is that even web apps of tech giants can be successfully exploited4, in which average
people put their trust. That is why big game individuals or cybercriminal groups might
preferably target these bigger systems. Another example can be E-Commerce, which is a
financially beneficial target. However, web attacks can also result in data breaches, which
means that private data gets leaked. This can cause and is causing real threat, e.g. to
social media platforms, where people share lots of their personal data. The goal of this
thesis is to detect these attacks, however, I think that relying on a flow-based IDS to
prevent companies from web attacks must be a last resort. The majority of attacks can
be mitigated with writing secure web apps.

The attacks were done on Damn Vulnerable Web App (DVWA) [14] with automation.
This app was made for cybersecurity professionals to test their skills and for developers
to help them understand the securing of web applications better. The process of making
attacks is not detailed enough in the article of Sharafaldin et al. [59], thus I will try to
conclude these attacks in general and how they could be leveraged in the app. The DVWA
has 4 security levels (namingly easy, medium, hard, and impossible) to choose from; for
the sake of illustration, I will only describe the easy level. These levels stands for the
difficulty of exploiting a vulnerability. The attack schedule for this category is shown in
Table 3.4.

Date Attacker Victim Attack type
July 6, 2017 9:20-10:00 a.m. Kali Ubuntu16 WS Web Brute Force
July 6, 2017 10:15-10:35 a.m. Kali Ubuntu16 WS Web XSS
July 6, 2017 10:40-10:42 a.m. Kali Ubuntu16 WS Web SQLi

Table 3.4: Web-based attacks

3.3.4.1 Brute force

The fundamentals of brute force attacks were covered in Section 3.3.2. In DVWA a login
form can be bypassed with guessing the password of the "admin" user. This can be done

3LOIC SourceForge page https://sourceforge.net/projects/loic/ (Accessed: 2022-12-04)
4World’s biggest data breaches https://www.informationisbeautiful.net/visualizations/

worlds-biggest-data-breaches-hacks/ (Accessed: 2022-12-04)

13

https://sourceforge.net/projects/loic/
https://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/
https://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/

with several tools, e.g. with Hydra. An optimal mitigation strategy would be to make
a limit for maximum password tries per session and to use key derivation functions on
passwords, e.g. Argon2 [8].

3.3.4.2 XSS

Cross-Site Scripting (XSS) vulnerabilities let attackers execute Javascript code in the
browser of the target(s). They contain a wide variety of attacks, which can be categorized
into 3 groups: stored-, reflected-, and DOM-based XSS. Stored XSS has the biggest impact
of them because the result of the JavaScript code will be stored on the backend server [2].
This means that every visitor will have the injected code running when navigating to
the affected endpoint. Having posts and comments makes usually the site vulnerable
to this attack. The website is vulnerable to reflected XSS if the used exploit payload
gets executed by the backend but it is not a persistent change on the behaviour of the
web app [41]. DOM-based (Document Object Model-based) XSS vulnerability is also not
persistent but it is processed on the frontend. It can be used for phishing because the
domain name of the site will seem secure, however, the url parameters and anchors will
be malicious to the user. The majority of XSS attacks could be prevented with, e.g. input
and output sanitization, setting certain security headers within the server configuration,
and using HTTPS across the entire domain. Out of the three, reflected and stored XSS
vulnerabilities are exploitable within the DVWA.

3.3.4.3 SQLi

Web applications in general require a database to store data. To retrieve useful information
from it, the site has to use queries real-time on their backend. There are several query
languages to choose from but the most common is SQL (Structured Query Language),
which works in several DBMS (Database Management System) architectures. Because
websites are popular, attackers can more easily find vulnerabilities in the communication
with the database. Some of these vulnerabilities are caused by, e.g. the lack of input
sanitization and validation, which makes SQL injection possible. It is one of the most
common exploitation techniques.

On the easy level of DVWA there is a searchbar for finding a user by its ID [41]. It is a
common scenario in which the user input does not go through any checking procedures
and is executed straight in the SQL query. Mitigation strategies are, e.g. the formerly
mentioned input sanitzation and validation, using WAF (Web Application Firewall), and
using a user for the database queries, which has as low privileges as possible.

3.3.5 Ares

A botnet is a network of hosts controlled by a central host [16]. The most common usage
of them are DDoS attacks because a large botnet can cause a serious amount of traffic to
a single or even to distributed servers. It can also be used, e.g. to get access to remote
network or send spams. In this dataset it was used to get remote shell connection and
data about the host in the botnet, e.g. logging keystrokes. Ares is a botnet framework
implemented in Python. It implements two activities: the server and the agent. The server
part implements the CNC (Command and Control) functionality, which is responsible to
orchestrate agents5. The agent side runs on the compromised hosts and it is used to keep

5Ares GitHub repository https://github.com/sweetsoftware/Ares (Accessed: 2022-12-04)

14

https://github.com/sweetsoftware/Ares

the connection up between the CNC server and the client. The schedule for this attack is
shown in Table 3.5.

Date Attacker Victim Attack type
July 7, 2017 10:02-11:02 p.m. Kali Windows 7, 8.1, 10, Vista Botnet Ares

Table 3.5: Botnet attack schedule

3.3.6 Port scan

Nmap is the most commonly used tool for different kinds of network scanning. It can, e.g.
detect the hosts which are up, see the open ports on them and what might be serving on
that port. I listed some of the benefits of using this tool but there is also a wide variety
of switches for the customization of the scans. The NSE (Nmap Scripting Engine) gives
another layer to this tool as it is able to execute scripts on the found targets, which might
result in getting more information on a service or finding an easily detectable vulnera-
bility or misconfiguration. The Nmap switches used6 for creating malicious traffic are in
Table 3.6 and the attack schedule is in Table 3.7. The description of the dataset does not
provide a clear concept on what firewall rules were used. The paper mentions only that a
Fortinet firewall was used [59].

Switch Description
-sS TCP SYN scan
-sT TCP Connect() scan
-sF TCP FIN scan
-sX Xmas scan
-sN TCP NULL scan
-sP Skip port scan
-sV Probe open ports to determine service/version info
-sU UDP scan
-sO IP protocol scan
-sA TCP ACK scan
-sW TCP Window scan
-sR An alias to -sV
-sL List scan
-b FTP bounce scan

Table 3.6: The list of the used Nmap switches

Date Attacker Victim Attack type
July 7, 2017 13:55-14:35 p.m. Kali Ubuntu16 WS Port scan - Firewall rules on
July 7, 2017 14:51-15:29 p.m. Kali Ubuntu16 WS Port scan - Firewall rule off

Table 3.7: The schedule of port scans

6Nmap brief man page https://nmap.org/book/man-briefoptions.html (Accessed: 2022-12-04)

15

https://nmap.org/book/man-briefoptions.html

3.3.7 Heartbleed

OpenSSL is an open-source cryptographic tool to be used for secured communication over
networks. Heartbleed [22] is a widely known vulnerability discovered in the TLS heartbeat
extension of this tool. It leaked memory contents from the server, which contained e.g.
private keys and other valuable information (e.g. passwords). This vulnerability is referred
to as buffer over-read7. The significance of this vulnerability is that it is still exploitable
on some devices on the internet. The attack also has a website, which states that IDS/IPS
devices can only detect but cannot block this attack separately. The attack schedule is
shown in Table 3.8.

Date Attacker Victim Attack type
July 5, 2017 15:12-15:32 p.m. Kali Ubuntu12 WS Heartbleed

Table 3.8: The schedule of Heartbleed attacks

3.3.8 Infiltration

Infiltration can be harmful if the target system has outdated software(s). This attack
type has multiple stages required for a successful attack. The first main goal is to place a
malicious file on one of the corporate computers of the target organization. This can be
achieved e.g. by sending a spam e-mail with malicious attachment or link to the malicious
file. Then the file should be opened/executed along which the malicious activity takes
place. The files were deployed on the systems in 2 various ways [59]. One of this methods
was using an uploaded malicious file on Dropbox, the other approach used a USB stick
to deploy the file on the computer. The malicious activities vary but during the creation
of the dataset a backdoor was opened on the targeted computers. A backdoor grants
unauthorized access to a private network with bypassing security mechanisms.

The infiltration attack schedule is listed in Table 3.9. The documentation of the
dataset [59] does not specify any other attack that was executed on the network after
gaining backdoor access for the first 2 rows in the table. However, with the last one a port
scan attack was executed from the Windows Vista to the other network hosts.

Date Attacker Victim Attack type
July 6, 2017 14:19-14:21 p.m. Kali Windows Vista Infiltration - Dropbox
July 6, 2017 14:53-15:00 p.m. Kali Macbook Infiltration - USB
July 6, 2017 15:04-15:45 p.m. Kali Windows Vista Infiltration - Dropbox

Table 3.9: The schedule of Infiltration attacks

3.4 Errors in CICIDS2017

During my work on this thesis – after working with the CICIDS2017 dataset for one and a
half months – I realized that this dataset might have some shortcomings. The first time I
have noticed this was when I read the documentation of the dataset and the attacks were

7Buffer over-read vulnerability https://cwe.mitre.org/data/definitions/126.html (Accessed:
2022-12-04)

16

https://cwe.mitre.org/data/definitions/126.html

not detailed enough to get a concept of their execution. Also, some descriptions did not
make sense and the naming of network devices was not consistent in some cases.

The problem is that papers properly criticizing this dataset have not been released in
a notable number until recently but after I was directly searching for the errors of this
dataset, a publication submitted on 12 September 2022 came up made by Lanvin et al. [29].
It is based on the errors found by two previous publications and provides an assumably
better solution for the correction of the errors made in the dataset.

One of them was published in 2021 by Engelen et al. [15], which found errors in the
pcap processing tool used by the original creators of the dataset, which is CICFlowMeter.
The flaws detected by this work include, e.g. that the termination of TCP connections
were falsely implemented, the time intervals of the attacks given by the creators were not
precise, not executed attacks were labeled as attacks, some attacks were not used cor-
rectly, and many others. To answer the flaws found, they introduced their own, corrected
CICFlowMeter8.

The other one was published in 2022 by Rosay et al. [44], which found other flaws in the
original tool including, e.g. wrong protocol detection, feature duplication and miscalcula-
tion. They proposed LycoSTand9, which is a flow-based extractor. Further description of
these two publications is not in the scope of this thesis.

Lanvin et al. chose to continue the work of Engelen et al. by finding more errors in the
data retrieved from the corrected CICFlowMeter. This means that the tool developed by
Rosay et al. might contain corrections of flaws that the former two works did not. Lanvin
et al. found 4 additional errors in the corrected tool which are the following: errors in the
creation of flow descriptions, incoherent timestamps, duplication in the network capture,
and incorrect labeling of port scans that happened during infiltration (see Section 3.3.8).
The first flaw occurs because the original CICIDS2017 was not sorted by timestamps and
CICFlowMeter interprets TCP handshakes in the wrong order. This feature of reordering
already got included in the corrected tool developed by Engelen et al. The second error
is also in connection with TCP handshakes, more precisely with the example used in the
paper: a SYN-ACK packet might have lower timestamps than a SYN packet, which results
in the inversion of source and destination IP addresses. This observation could not be fixed
because it could not be automated. The third error is the number of duplicates in the
network capture, which takes up 4.5% of the packets each day. In one time interval of
infiltration attacks detailed in Section 3.3.8, there was a second phase of the attack, which
is a port scan on the other hosts from the controlled Windows Vista. These port scans
were mislabeled and they came up with an automated correction for this. They propose 6
datasets10 from the permutation of 3 alterations, which are the following: reordering of the
network captures before using the tool (R), adding the new port scans (P), and keeping
duplicate rows (D). The best permutation in my opinion is RP, which addresses all of
the issues. I have also used 2 dimensional UMAP estimation on the first 100000 samples
– after the preprocessing stage – which can be seen in Figure 3.3. The improved dataset
has an objectively clearer separation of categories than the original had (see Figure 3.2).

Originally, the plan was to evaluate the chosen models only on CICIDS2017, however,
after getting to know the problems of the dataset, I chose to write about these flaws and

8The GitHub repository of the corrected CICFlowMeter https://github.com/GintsEngelen/
CICFlowMeter (Accessed: 2022-12-04)

9The repository of the LycoSTand tool http://maupiti.univ-lemans.fr:2443/lycos/lycostand?
(Accessed: 2022-12-04)

10The dataset permutations made by Lanvin et al. https://gitlab.inria.fr/mlanvin/crisis2022/
-/tree/main/Labels (Accessed: 2022-12-04)

17

https://github.com/GintsEngelen/CICFlowMeter
https://github.com/GintsEngelen/CICFlowMeter
http://maupiti.univ-lemans.fr:2443/lycos/lycostand?
https://gitlab.inria.fr/mlanvin/crisis2022/-/tree/main/Labels
https://gitlab.inria.fr/mlanvin/crisis2022/-/tree/main/Labels

their mitigation also. I will make a short chapter at the end of the thesis (Chapter 6) to
show how this data could be preprocessed and classified by the same methods as used on
the original CICIDS2017.

Figure 3.3: The 2 dimensional plot of the RP dataset

18

Chapter 4

Preprocessing

The CIC-IDS2017 dataset – and datasets in general – can be downloaded in a form that
usually does not meet the purpose of training classifiers, furthermore, various scenarios
might require different modifications on the data. This necessitates preprocessing, which
prepares the dataset to be used for classification by changing the characteristics of it e.g.
reducing the number of rows and/or columns. By the end of preprocessing the data should
be as optimized as possible for the used ML models.

There are IDS related papers based on CICIDS2017 which focus on specific CSV files but
I worked with all of the data provided by the authors of this dataset. The list of used files
are shown in Table 4.1.

Name of file
Monday-WorkingHours.pcap_ISCX.csv
Tuesday-WorkingHours.pcap_ISCX.csv
Wednesday-workingHours.pcap_ISCX.csv
Thursday-WorkingHours-Morning-WebAttacks.pcap_ISCX.csv
Thursday-WorkingHours-Afternoon-Infilteration.pcap_ISCX.csv
Friday-WorkingHours-Morning.pcap_ISCX.csv
Friday-WorkingHours-Afternoon-DDos.pcap_ISCX.csv
Friday-WorkingHours-Afternoon-PortScan.pcap_ISCX.csv

Table 4.1: The files used for my work

In this case I am working with tree-based models, thus normalization or standardization
is not needed because they are insensitive to this aspect. Furthermore, feature encoding is
also unnecessary because the dataset does not contain categorical features. However, other
generic alteration techniques are present in my preprocessing stage, which will be detailed
in the sections below. The dataset contains 14 types of attacks (plus benign samples),
which have high diversity in the number of occurrences as shown in Table 4.2.

It can be seen from the table that some attack types have notably less representatives
than others. This is concerning when it comes to teaching models because models might
need more balanced groups for classification. In order to improve the data in this regard –
while also making the attacks as transparent and compact as possible – I came up with the
idea of grouping attacks. This generalization will not ruin the outcome of the classifiers,
in fact on the contrary, because this might help new attacks to be classified accurately.
The resulting groups are more comprehensive and can lead to better understanding of
the dataset. Web Attack - Bruteforce, Web Attack - XSS, and Web Attack - Sql injection

19

Category Number of occurence
BENIGN 2273097
DoS Hulk 231073
PortScan 158930
DDoS 128027
DoS GoldenEye 10293
FTP-Patator 7938
SSH-Patator 5897
DoS slowloris 5796
DoS Slowhttptest 5499
Bot 1966
Web Attack - Brute Force 1507
Web Attack - XSS 652
Infiltration 36
Web Attack - Sql Injection 21
Heartbleed 11

Table 4.2: The categories of the samples

could be grouped into Web-based category because they are exploiting the same web
application. DoS attacks in general can be executed in widely different manners – as I
have detailed in Section 3.3.3 – but the goal with them is to cause outage, i.e. to disrupt
a service. From this consideration, DoS HULK, DoS GoldenEye, DoS slowloris, and
DoS Slowhttptest were grouped into DoS category. By the definition of these attacks,
Heartbleed could also be included in this category, however, I chose to drop this attack
type because it is not represented well enough. I dropped Infiltration as well for the same
reason, moreover, it could not be grouped together with any other attacks. As I have
detailed in Section 3.3.2, the attacks executed with Patator are for the brute forcing of a
service. These attacks were grouped into Bruteforce category.

I dropped 4376 rows, which contained positive or negative infinite values because these
values can cause errors during evaluation. To sum up, I had to drop 4423 rows, which is
fortunate as it is only 0, 156% of the whole dataset. According to one of the easily missed
best practices, I randomly shuffled the samples. The results are shown in Table 4.3.

Category Number of occurence Numeric notation
BENIGN 2271320 0
DoS 251712 1
PortScan 158804 2
DDoS 128025 3
Bruteforce 13832 4
Web-based 2180 5
Bot 1956 6

Table 4.3: The new groups

20

4.1 VarianceThreshold

Feature selection will be detailed in Section 4.4, however, I had to make a preliminary
selection based on zero variance features. Each of these columns contain only a single
value, which makes them unnecessary as they do not provide extra information for the
later processes. By dropping them, the dataset will have less dimensions, which reduces
run time for the preprocessing phase. I used VarianceThreshold from the scikit-learn
package and with this approach I could remove all features, which are below a variance
threshold. Variance can be calculated for each feature with the following equation:

σ2 = 1
n

∗
n∑

i=1
(xi − µ)2, (4.1)

where n is the number of samples and µ is the mean of the values in the column.

8 features were dropped, making further evaluations faster. The variance of each feature
is shown in Figure 4.1.

Figure 4.1: Features variance (on logarithmic scale)

4.2 Splitting

Under splitting I mean dividing the rows into three fully separable parts used for training,
validation and test. Train and validation sets are assumed to be in our hands and test
is the set which might have zero-days and in general attacks that are not necessarily

21

contained by the former two sets. In my thesis, I did not make steps in order to select
attacks, those will only be contained by the test set because the attack pool is not big
enough for this purpose. It models the previously unseen behaviours, which come up in
real life scenarios. It is crucial to have a training set which is as close to perfect as possible
because it is used to teach the models. Validation set is a part of the previously known
data, however, it is used to get a feedback on how well the trained and fine-tuned model
will classify new attacks, also meaning that it is used to choose the best hyperparameter
setting (see Section 5.2).

I have tried several splitting measures i.e. 50 − 20 − 30, 65 − 15 − 20 and 70 − 15 − 15,
but I found that 60 − 20 − 20 is the most viable ratio in this scenario, where the dataset
has more than 2.8 million rows. I mainly chose this splitting ratio because it is broadly
used in IDS related papers. With this split, train set has enough from each attack type
to train the models, while it does not make the training phase extremely time consuming.
Table 4.4 shows the number of samples for each category in the train set. Validation and
test sets have both 565566 samples and around the same occurrences within categories
because of the previously mentioned random shuffle.

Category Number of occurence
BENIGN 1362936
DoS 151023
PortScan 95110
DDoS 76940
Bruteforce 8238
Web-based 1278
Bot 1172

Table 4.4: The training set after splitting

4.3 Sampling

In this section I will detail the techniques I used for sampling the data. Sampling is an
important step when the dataset is imbalanced. A dataset is imbalanced when the its labels
are not roughly uniformly distributed. In Table 4.4, we can see that BENIGN samples
are the majority by far, while Web-based and Bot categories have almost unrecognizably
few occurrences. It is also notable that the attacks to benign ratio is around 1 : 4, which
is not ideal when we want to predict minority classes accurately. As a basic hypothesis, I
wanted to sample down the majority class (the BENIGN samples) to the point of attacks.
This proved not to be good enough, because the overall prediction error did not meet my
expectations. Then I recognized that some kind of oversampling is also needed for the 2
least common attacks. However, making the CICIDS2017 dataset balanced is not as easy
as it might seem because we do not want to decrease the expressiveness of the classes and
we want to remove as many rows as possible at the same time. Oversampling on Web-
based and Bot categories had to be tried several times with continuously changing the
destined number of samples for the groups. These approaches were validated each time
on the validation set to see whether the amount of oversampling used for these categories
was beneficial.

The resulting class ratios after sampling can be seen in Figure 4.2. It can be seen on
these ratios, that the dataset got balanced only by attacks to BENIGN ratio – which
stands for binary classification – not by altering all categories to the same level. I tried

22

the latter method too, but it resulted in overfitting for several attack classes. The figure
shows that Bot and Web-based attacks changed place in the number of occurrences as
it is not required by oversampling to conserve the order in this sense. One important
note: their labels will remain the same – which means 5 for Web-based and 6 for Bot
category – because the sampling does not change the initial occurrence of the attacks.
This method only tries to make the category more recognizable and learnable for the used
model. Sampling was only used on the training set.

(a) before sampling

(b) after sampling

Figure 4.2: Occurrences before and after sampling the training
data

4.3.1 Random Undersampling

For undersampling the BENIGN category, I used the RandomUndersampling [42] function
from the imbalanced-learn package. The approach is quite simplistic: it takes random
rows of the whole training dataset in a number previously specified but does not make
any kind of exception on the samples. In other words, it is sampling with replacement.
Thus, the method is time efficient in exchange for not taking in account the importance
or uniqueness of rows. I used RandomUndersampling to randomly pick 345000 samples
from BENIGN class in the training set, which is slightly higher than the total number of
attack occurrences. This technique does not have any noticeable downsides for this class.
This means that the amount of chosen BENIGN samples represent the whole class well
enough. Another benefit of using this method is that we can reduce run time with it,
which makes experimenting easier.

23

4.3.2 SMOTE

When a class is underrepresented in our training set, we can use various oversampling
techniques to make duplicate or synthetic samples from our data. Synthetic Minority
Oversampling Technique (SMOTE) [11] is a technique for the latter purpose. It aims to
be a better alternative for random oversampling. Random oversampling takes random
samples from the existing training set and adds it again to the dataset. This means that
the chosen models will learn the oversampled rows multiple times, which might result in
overfitting.

For this thesis, I chose SMOTE from the imbalanced-learn package and I oversampled Web-
based attacks to 3000 and Bot attacks to 6000. SMOTE uses the k-Nearest Neighbors
algorithm as the basis of its functionality. It has a k_neighbors parameter (defaults to 5),
which tells the k-NN algorithm how many neighbors should be considered around each tar-
get sample (i.e. Web-based and Bot samples in this case). New points can be created be-
tween a target sample and its neighbors resulting in a maximum of k_neighbors∗(k_neighbors-1)

2
samples. The algorithm selects a random number r ∈ (0, 1] for each synthetic sample.
They will be created on the line between the target sample and one of its neighbors with
the following equation:

Si = T + r ∗
−−→
TNi, (4.2)

where i = 0, . . . , k_neighbors − 1, Si is the synthetic sample, T is the target sample and
−−→
TNi is the vector between the target sample and its ith neighbor.

4.4 Feature elimination

Feature elimination can be applied to datasets, where the amount of features is found to
be overwhelming. In order to eliminate features, first the selection of important features
should be done. This method can be used in almost every training scenario because
sometimes there are columns which are not important enough for the final estimator.

In my case, I had 70 features (plus label) after removing the zero variance features. Using
this set for training the model still results in too high computational times on my hardware
(see Chapter 5). To reduce this, we can eliminate features which might also be useful to
remove less expressive features. In order to select features I applied a widely used method:
the ANOVA F-test.

Analysis of variance (ANOVA) [64] is a collection of statistical hypothesis tests used for
analyzing the differences among means. One of these tests is the F-test, which calculates
the ratio of the variance between and within features.

In order to use the output of the F-test, I used RandomForestClassifier (see Section 5.4)
to evaluate the difference between the selection of incrementally smaller sets from the best
features. ANOVA F-test tests each feature separately and it checks if the distribution of
the feature is the same for the different target categories. For the feature selection – by
the values ANOVA F-test assigned to columns – I used SelectKBest from the scikit-learn
package, which has a parameter k to set the number of top features to select. Then I
masked the train and validation subsets with the output. In each iteration, I fitted the
classifier on the train set with a smaller feature set every time. Then I evaluated the model
on the also modified validation subset with F1 macro (see Section 5.1.6 and 5.1.2.1) as the
metric. The output is shown in Figure 4.3.

24

Figure 4.3: F-test iterations

As it can be seen in the figure, there are many features that do not make predictions better
on the validation set. The selected number of features should be chosen by taking the run
time reduction-data expressiveness trade-off into consideration, which might change in
different scenarios. In this case, the rule of thumb was to choose the threshold before the
formation of a knee. The last decent score is 0.9664 with 32 features. I wanted to sum up
these features with their descriptions, however, the descriptions provided by the authors
of the dataset are grammatically incorrect in many cases meaning that they are not always
easy to interpret1. I chose to omit this table because I could not get a deep inspection of
their CICFlowMeter tool during my thesis, which could lead to the correct descriptions.

4.5 Preprocessing summary

As I have mentioned previously, one of the key motivations behind my preprocessing
approach is to reduce training time of the used models. To see how a preprocessing
stage affects the training set, I fitted a model with the evolved training set each time
and validated on the validation set. The model I used was RandomForestClassifier
which will be detailed in Section 5.4. I chose this model because it is an ensemble learning
method, which has the lowest time complexity of the ensemble learning models used in this
thesis. For the validation, I used the following metrics: F1 score with macro averaging,
recall with macro averaging, and precision with macro averaging (see Section 5.1). The
results of each preprocessing step can be seen in Figure 4.4.

The figure contains 3 thresholds: Default, Sampling, and Feature elimination. The Default
contains scores from the evaluation made after the elimination of zero variance features.
It can be seen in the figure that in each stage the scores stay almost the same, which is
the sign of success because we could reduce run time significantly (see Figure 4.5) while

1The feature names with descriptions https://github.com/CanadianInstituteForCybersecurity/
CICFlowMeter/blob/acaf8bea8611fb4b996b4d33964dfd9155d9efdf/ReadMe.txt#L79 (Accessed: 2022-12-
04)

25

https://github.com/CanadianInstituteForCybersecurity/CICFlowMeter/blob/acaf8bea8611fb4b996b4d33964dfd9155d9efdf/ReadMe.txt##L79
https://github.com/CanadianInstituteForCybersecurity/CICFlowMeter/blob/acaf8bea8611fb4b996b4d33964dfd9155d9efdf/ReadMe.txt##L79

Figure 4.4: Results of preprocessing stages

keeping the predictive quality high. Precision-recall trade-off can also be seen in the figure,
which means that if we boost precision up recall gets lower.

Figure 4.5: Times passed during fitting and validation

In Figure 4.5, we can see that the time of fitting the model is radically reduced with
the sampling step and after the feature elimination stage the fit time reduced by 55.3
seconds. The second part of the figure shows that only Feature elimination changed the
time complexity of validation, which is because validation (and test) sets were only altered
in that process.

26

Chapter 5

Evaluation

After the preprocessing of the dataset was done I could test how different models perform
on it. As it was previously mentioned, the main goal of preprocessing is to reduce the run
time of the models which is crucial when working in a home environment where resources
are limited. The specifications of my computer can be seen in Table 5.1. In some cases,
when working with larger datasets the importance of page files gets bigger. I used a
maximum of 12 GB on my SSD and 24 GB on my HDD for this purpose.

Hardware Manufacturer Type Specifications
CPU AMD Ryzen 5 5600X 6 core, 12 thread, 3.7 GHz
RAM Kingston HyperX Fury 32 GB (4*8 GB), 3200 MHz
GPU ASUS GeForce RTX 2060 OC 6 GB GDDR6

Table 5.1: The used computer resources

I set up 2 different environments as I have mentioned in Chapter 2. One of them is
directly on a Windows 10 host and the other one works under WSL 2. The latter is
practical because I used GPU acceleration for one of the models (see Section 5.6) and
WSL is capable of accessing it. It is important to note that my GPU is not optimal
for this kind of evaluation as it is made for a more general use-case. I wanted to try
GPU evaluation anyway because of its expected faster performance. With that said, time
complexity is not the first priority, when looking for the most optimal models as my setup
is not built for this usage and there is no target architecture to optimize the models for.

Arguably the most important phase of the intrusion detection topic is evaluation. In the
sections below I would like to present a clear result which should be able to make my work
comparable to other methods proposed in other papers. Because of the complexity of the
evaluation process, in the followings I will present the base knowledge behind evaluating
models. Section 5.1 contains the metrics that can be used to compare the results of
the learning and classifying performance of the models. These metrics will be presented
through mathematical explanations and also with figures when it is sufficient. There is no
model that can be used for any data out-of-the-box and will provide the perfect solution.
Moreover – to this day – it would not be a realistic intention. Therefore, the models should
be customizable with parameters constraining their training methods. Some of these
parameters, known as hyperparameters, cannot be perfectly found by only considering
the model and dataset used. To find their presumably best value, hyperparameter fine-
tuning is the key which will be detailed in Section 5.2.

27

After that, each model will be detailed with a high-level approach, sometimes writing
about their mathematical background when it is crucial. These sections will try to focus
on the features of the models, which are useful for beginner researchers and for introducing
the concepts behind them. Later, for each model there will be a section where I write
about their fine-tuning and evaluation procedures. Fine-tuning will be constrained to just
2 − 3 parameters each time – because of the high computational time on my setup – for
finding suitable parameters. There will be repeated figures throughout the description of
models. The meaning of these figures will only be described in Section 5.3.

The section for each model will continue with a short evaluation part, where I sum-
marize the classification with results broken down by categories. I used Decision Tree
(Section 5.3), Random Forest (Section 5.4), AdaBoost (Section 5.5), and XGBoost (Sec-
tion 5.6), which are famous machine learning models. The latter three are ensemble
learning methods. Usually these methods share the base idea of using some variations of
Decision Trees as their base estimator and this is why I have included it too.

After the separate descriptions of the evaluation of the models, the evaluation summary
(Section 5.7) will contain the comparison of the models. This includes, e.g. the analysis
of their time complexity while training, validation, and testing, their overall classification
success measured by some of the metrics detailed in Section 5.1, and the analysis of the
false negative samples (see Section 5.1) which could not be classified by the majority of
these models. I will also compare some of the results with other papers. It is hard to
find perfectly comparable papers – but naturally it is not necessary for them to be per-
fectly comparable – as the preprocessing phase differs in many cases. The most notable
difference is made by the dropped attack types, which are (Hearthbleed and Infiltra-
tion). Although, the lack of these attacks are not causing highly unfair comparisons, I
will describe the main differences between the to be compared approaches in each case.

28

5.1 Metrics

There are two main methods when evaluating IDS datasets. One of them is binary classi-
fication, which is when there are just two possible labels in the dataset meaning, e.g. one
category for attacks and one category for benign behaviour. The other one is multiclass
classification, when the attacks are distinguished too. For this thesis I used multiclass
classification as I not only want to separate attacks as deviation from normal behaviour
but to categorize them as a more real life approach. The following metrics are used to
measure the performance of the anomaly detection methods in my thesis. They also make
the proposed methodologies and algorithms comparable with other methods described in
other papers.

5.1.1 Confusion matrix

The confusion matrix is a specific table for supervised learning, which reveals the perfor-
mance of classification algorithms [47]. The two axes of the matrix represent the predicted
and the actual values. Although I used multiclass classification, the binary confusion ma-
trix will be presented first as it is easier to interpret.

In the binary approach the previously mentioned two axes contain only true and false
values. This makes up 4 possible outcomes, which are true positive (TP), false positive
(FP), true negative (TN), and false negative (FN). An ideal confusion matrix would contain
a high number of samples in true positive and true negative states and around zero in
false positive and false negative states. Figure 5.1 shows an example of a binary confusion
matrix.

Figure 5.1: Example of an ideal binary confusion matrix

The axes of the multiclass version have as many values as the number of categories in the
dataset. Thus, in the preprocessed CICIDS2017 dataset there will be 7 values on each axis
representing: BENIGN, DoS, PortScan, DDoS, Bruteforce, Web-based, and Bot.
To have a simpler layout, I used numbers instead of words for the figures. The numeric
replacements can be seen in Table 4.3 and an example of a multiclass confusion matrix is
shown in Figure 5.2.

Let CM be an n×n matrix, i be the row index, j the column index, and CMi,j an element
of the matrix, where i, j ∈ [0, n − 1]. Attacks are in those cells, where i, j > 0. The values,

29

where i = j and i, j > 0 are TP, leaving other cells in this area to be miscategorized attacks.
TN samples are in the cell, where i, j = 0. FP samples are represented in the cells, where
i = 0 and j > 0. CMi,j is FN, when i > 0 and j = 0. To summarize: if most of the
values stay in the diagonal, then it is generally an indicator of good classification. Further
improvements can be issued with bringing FN classifications as close to 0 as possible if
needed.

Figure 5.2: Example of a multiclass confusion matrix, which rep-
resents an almost perfect outcome

For metrics to be calculated in a multiclass scenario this confusion matrix is not suitable.
Consequently, we need to break it down into multiple binary matrices. This can be done
with making a matrix for every category where the label of the actual target class will be
replaced with 1 and the labels of other classes with 0.

5.1.2 Averaging techniques for multiclass classification

When measuring the performance of a multiclass classification, the goal is to reduce the
problem to binary classifications. These binary cases will be calculated with the alteration
of the actual and predicted labels as it was formerly mentioned (see Section 5.1.1). This
way we can calculate the metrics mentioned in the followings. If the case requires only
one output value, then several averaging techniques can be performed in order to do so.
Micro averaging will not be detailed because it is basically calculating accuracy [19].

5.1.2.1 Macro averaging

The macro average – or otherwise known as unweighted mean – can be calculated by
taking the mean of the result of each class by the target metric [19, 54].

30

metricmacro =
∑n−1

i=0 metrici

n
, (5.1)

where n is the number of classes and metrici is the result of the target metric for class i.

5.1.2.2 Weighted averaging

Weighted average takes into account the supporting samples behind the classifications for
each category by multiplying each score with the presence of the categories in the used
dataset [54].

metricweighted =
n−1∑
i=0

metrici ∗ supporti

m
, (5.2)

where n is the number of classes, m is the number of samples in the whole data used and
supporti is the number of samples in class i.

I will use only macro averaging in my work because weighted averaging is too lenient
towards the misclassification of low represented classes in imbalanced datasets.

5.1.3 Accuracy

Accuracy measures the ratio of correctly classified samples. If the predicted labels (y′)
and actual labels (y) are given, the following equation can be written for binary classifi-
cation [54]:

accuracy(y, y′) = 1
n

∗
n−1∑
i=0

I(y′
i = yi), (5.3)

where yi is the ith true value and y′
i is the ith predicted value and I(x) is the indicator

function. Parameter n is the length of the y column. The simplified expression of this –
which can also be used for multiclass classification – is [19]:

accuracy = TP + TN

TP + TN + FP + FN
. (5.4)

5.1.4 Average precision

To introduce the average precision, there are two metrics that have to be defined first.
One of them is precision, which is the ratio of the true positive values and the predicted
positive samples [19],

precision = TP

TP + FP
. (5.5)

The other one is recall, which is the ratio of the true positive samples and all positive
samples [19].

recall = TP

TP + FN
. (5.6)

31

The average precision (AP) score is calculated by summarizing a precision-recall curve as
the weighted mean of precisions at each threshold. To calculate this score – to one target
class – the following equation can be written [46]:

AP =
∑

n

(Rn − Rn−1) ∗ Pn, (5.7)

where Rn is the recall and Pn is the precision at the nth threshold. Figure 5.3 shows an
example for an AP curve.

Figure 5.3: An AP curve with the score of 0.67

5.1.5 ROC AUC

Receiver operating characteristic (ROC) is a probability curve. It is plotted with false
positive rate (FPR) on the x-axis against the recall – otherwise known as true positive
rate (TPR) – on the y-axis, where [66]:

FPR = FP

FP + TN
. (5.8)

The area under the ROC curve (ROC AUC) [66] gives a scalar value in the [0.5, 1.0] range.
If the ROC AUC score is 1.0, then the model is considered a perfect classifier. On the
other hand, if the score is 0.5, then it means that the model chooses labels randomly for
the sample, i.e. it works like a random classifier. Figure 5.4 shows an example for a ROC
curve.

I used the one-vs-rest (OVR) version for this metric with macro averaging. The one-vs-rest
method means that the AUC of each class is computed against the rest [54].

32

Figure 5.4: A plotted ROC curve with ROC AUC being 0.9

5.1.6 F1 score

ROC AUC score is not as sensitive to class imbalance as it might be needed for some
scenarios. For those cases F1 score should be used. With this metric low false predictions
will result in a high score as the relative contribution of precision and recall are equal [51].
F1 score can be calculated for each class with the following equation:

F1 = 2 ∗ precision ∗ recall

precision + recall
, (5.9)

where precision and recall are the metrics that are formerly discussed in Section 5.1.4.

33

5.2 Hyperparameter tuning

ML models have different parameters that can be set. This customization is required for
the models to be able to provide appropriate results for various datasets. Some of these
parameters can be easily chosen to fit the actual scenario but there are also some which
can almost only be guessed. These are called hyperparameters.

In order to maximize the performance of the chosen model, these hyperparameters have
to be tuned. After the iterations on different values, we can pick the one with the best
performance. The performance might be measured by different means depending on the
actual use-case. In machine learning this process plays a big role, thus I will detail it
further in Section 5.2.1. However, there are different circumstances which can make this
maximization task hard or even impossible with my current resources (see Chapter 5).

One of them is selecting the value set of the hyperparameters correctly. E.g. preliminary
data inspection and evaluation with basic parameters can be done to get a basic idea of
them. However, in some cases these are not sufficient and also some manual evaluation
is needed where the parameters are changed by hand every time in order to find possible
boundaries for their values. Also, this set should not be too big nor small because bigger
sets result in high computational time and smaller ones in low coverage. Another problem
with hyperparameters is that even if the perfect values are selected, how to know that it
will classify also new data correctly, i.e. will it be robust enough for the use-case. The
only assumption we can make on this is that the training set is reliable and large enough
for preparing the classifier to be evaluated on the test set.

As the rule of thumb, I chose to tune all of the methods with randomly selected 100000
samples from the train set. I will refer to these samples as fine-tuning set. This sampling
measure had to be done because the size of the training set was too large for my computa-
tional resources [4]. Also, it ensures that each classifier gets tuned on the same subset; the
used machine learning methods have some kind of sampling built-in, however, I could not
control them the same way. The results of this process might be biased because training
data used for tuning was smaller, so the model training might not reach the optimum.
However, this alteration is needed because of the limited resources the home environment
has. Also, optimizing every method to reach its maximum effectiveness of classifying sam-
ples is not in the scope of this thesis. The validation set has a big emphasis in the tuning
process because the evaluation of the best hyperparameter sets will be done on it. If the
best estimator of a fine-tuning procedure is achieving poor scores on this set, then the
value ranges provided for the fine-tuning procedure are not accurate and need altering.
The process of fine-tuning can be seen in Figure 5.5.

5.2.1 Grid search with cross-validation

Before writing about the grid search mechanism, I will detail one of the machine learning
fundamentals, which is cross-validation (CV). It is a widely used strategy to test and
compare the performance of ML models and has several variants which differ in execution.

K-fold CV is one of them and it can be found in the scikit-learn package under the name
KFold. This cross-validation technique randomizes the data and then splits it into K
pieces [6]. Then the algorithm fits the model each time with different K − 1 piece of the
whole dataset and evaluates on the last 1 split through K iterations. The K − 1 piece
is referred to as train, leaving 1 for testing purposes. Important to note that in the fine-
tuning part of each classifier I will use these train and test splits – or train and test folds

34

Figure 5.5: The process of fine-tuning

– not the global ones. One common parameter for K is 5. The splitting of a dataset is
shown in Figure 5.6.

Figure 5.6: Example for the data splitting of 5-fold cross-
validation

The K-fold CV then takes the average of the scores of each iteration: CV =
∑K−1

i=0 CVi

K ,
where CV is the final score and CVi is the ith. There are several metrics to choose from for
cross-validation(see Section 5.1). I used F1 macro, ROC AUC OVR and precision macro
for the tuning part.

There is an improved version of the K-fold CV technique, which is called Stratified K-fold.
This method can be found as StratifiedKFold [56] in scikit-learn. The modification takes
place in the splitting part of the K-fold, where this method considers the imbalance of the
dataset, i.e. it preserves the ratio of resemblance of the dataset within folds [6]. I used
mainly this method in my thesis because the dataset is balanced only in the benign-attack
aspect, but it is not by categories along which the evaluation will take place.

35

Grid search is a popular method for fine-tuning with a rather simplistic approach. It
takes a value set for each hyperparameter and exhaustively searches in order to find the
best permutation. The best permutation of values will be determined by cross-validating
each resulting model by the target metric(s) (see Section 5.1). The grid search is a fully
parallelized process as each model will be fitted independently of each other. For grid
search, I used GridSearchCV [53] from the scikit-learn package. It requires an estimator
which needs to be tuned. It can be set with the estimator parameter. Also a param_grid
have to be provided for the method in which parameter sets are given. We can specify
metrics to use for validation with setting the scoring parameter. The used metrics were
F1 score with macro averaging, precision with macro averaging, and ROC AUC OVR.
However, when using multiple metrics the refit parameter should be set to one of the
scorers by which the grid search can chose the best parameter value set. The grid search
utilizes ranking in order to find the best value set. If the ranks for more configurations are
the same then the first (i.e. the value set with the lowest index) will be chosen. I chose the
F1 macro score for refit as I found it the most fitting metric to judge by. The ROC AUC
OVR tended to be around 1.0 most of the time and the precision macro score proved to be
too strict, which is not suitable in this scenario. Its strictness comes from Equation (5.5).
It assigns high scores for classifications which produce low amount of FP samples. Having
low amount of FP samples is good, however, it does not mean that the FN samples will
also be low. Reducing the occurrence of FN classifications has a higher priority in my
thesis. The cross-validation strategy can be set with the cv parameter. It defaults to
5-fold CV but I used the previously mentioned StratifiedKFold with n_splits (same
as K) equal to 5. The method can also assure an evaluation on the training folds which
can be used to see whether the parameter used resulted in underfitting, overfitting, or it
made a good fit. This can be done with return_train_score=True. As I have mentioned
earlier, the method can safely run parallelly, which can be controlled with setting the
n_jobs parameter. To utilize all CPU threads −1 should be used for this parameter.

After the tuning process of each estimators, they will be trained on the whole training set
instead of the fine-tuning set. The goal with the fine-tuning set was only to reduce the
time complexity of hyperparameter fine-tuning.

36

5.3 Decision Tree

Decision trees are tree-like models, which are capable of forming expressive decision-
making knowledge. They consist of two kinds of entities: decision nodes and leaf nodes.
The former usually contains a parameter along which the decision has to be made and has
multiple branches depending on the amount of possible outcomes. The latter is the bottom
of a branch and represents the output of the decision set made on the branch. In other
words, branches are the rules for classification. One leaf node cannot be contained by mul-
tiple branches. This provides the divisibility of the data. To build a Decision Tree, there
are multiple algorithms such as C4.5, CART, and ID3. I used DecisionTreeClassifier
from the scikit-learn package [49], which implements an optimized version of CART [48],
thus I will detail this specific algorithm.

The Classification And Regression Trees (CART) [67] model is a binary tree. Each decision
node represents a statement; if it is true for the data, it will continue on the true branch,
otherwise on the false branch. At the bottom of the tree there are leaves, which contain the
classification types based on the outcome of prior statements. To illustrate its structure,
Figure 5.7 represents a CART model. This implementation does not support categorical
features, however, the original version does. To get over this, we have to use feature
encoding, which will not be detailed in this thesis as the used dataset does not contain
features of this kind.

Figure 5.7: The structure of a Decision Tree

One fundamental parameter of the model is criterion. The model will use this parameter
to find the best splits on a decision node. It can have 3 states: information gain, gini
impurity, and log loss. In my thesis, I sticked to using information gain because their
difference with gini impurity is negligible and log loss returns probabilities, which is not
suitable for my evaluation concepts. Information gain is based on entropy. Entropy
measures the average information in an n bit long sequence, when the bits have the given
distribution. If the probability that bit i takes the value vi for a statement is P (vi) then
the entropy [30], denoted as H(X), can be calculated with

H(X) = −
n−1∑
i=0

P (vi) ∗ log2 P (vi), (5.10)

The information gain G(D|A) can be calculated with the following equation [30]:

37

G(D|A) = H(D) − H(D|A), (5.11)

where D is the dataset, A is a feature of the dataset and H(Y |X) is the conditional entropy,
which is the amount of information, that describes the outcome of random variable Y , given
that the value of X is known. Conditional entropy can be calculated with the expression
below [30]:

H(Y |X) =
∑
x∈X

P (x) ∗ H(Y |X = x). (5.12)

The algorithm constructs statements on the decision nodes with a feature and a threshold
which is – in this case – chosen by the largest information gain. This makes my case
different from the original CART model because it uses gini impurity as criterion.

The model also has several hyperparameters. I will discuss 3 of them. Firstly, there is
max_depth, which constrains the maximum length of a branch with an exact number.
This parameter is useful when we want more generic rules extracted from the model. It
can also prevent overfitting but it is important to note that choosing a small max_depth
results in underfitting. An essential parameter is min_samples_leaf, which defines the
minimum number of samples needed to form a leaf. The impact of this is that other
hyperparameters are considered only if they produce leaf nodes passing this norm. It helps
making more generic rules because otherwise the leaves can contain very few samples. The
next parameter is min_samples_split, which defines how many samples are needed to
split a decision node. In this case, splitting means that the samples on the decision node
can be divided into two further branches. Higher numbers prevent the model from learning
detailed relations. Figure 5.8 shows an example of these parameters in practice.

Figure 5.8: A Decision Tree parametrized with
max_depth=2, min_samples_leaf=100 and
min_samples_split=300

The last parameter I would like to introduce is class_weight. It is immensely help-
ful if the categories are imbalanced. As mentioned earlier in Section 4.3, imbalance is
present in the dataset. With this parameter, the significance of each class can be set. I
used class_weight='balanced', which assigns higher importance to lower represented
categories and vice versa.

38

5.3.1 Fine-tuning

The tuning of a Decision Tree is the least time consuming from the ML methods that I will
detail in the following sections, thus I tried to search for as many parameter combinations
as possible. I chose to tune the above mentioned 3 hyperparameters because of their char-
acteristics: max_depth, min_samples_leaf, and min_samples_split. The value ranges
corresponding to them are in Table 5.2. The following parameters were set for each iter-
ation: criterion='entropy', class_weight='balanced', and random_state=42. The
F1 macro score of the model with the tuned parameters is 0.95 on the validation set after
fitting on the whole training set.

Parameter Value range
min_samples_leaf 1, 2, 4, 6, 8, 10, 12, 14, 16
min_samples_split 2, 4, 8, 12, 16, 20, 24, 28, 32
max_depth 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, None

Table 5.2: The used parameter ranges

As the min_samples_leaf and min_samples_split parameters are highly correlated, I
chose their range correspondingly. I started by adding their default values which are
min_samples_leaf=1, min_samples_split=2 and max_depth=None.

By looking at the value ranges it is recognizable that grid search will make some unneces-
sary steps. Let P be a parameter set made by the permutation of the value ranges. Let us
assume that P = {min_samples_leaf=10, min_samples_split=4, max_depth=16}. These
parameter values will make contradiction in the model. The splitting parameter tells the
model, that it can split a decision node until it reaches the minimum of 4, however, the
minimum number of samples in leaf nodes is constrained to 10. This is not possible at
the same time, thus the min_samples_split will be automatically overrided because the
minimum number of leaf nodes is more constraining. I accepted this trade-off because
other than this, the grid search is the simplest way of choosing the best parameter set and
also, thanks to the low computational cost, this approach was feasible. The max_depth
value range was chosen by intuition, as I assumed that the Decision Tree will be under-
fitted below 10. It turned out that this range will be below 16 as my results show it in
Figure 5.9. The max_depth can be also set to None – which is also the default value for
it – and it tells the model that there is no limit for this parameter.

After running the grid search, the chosen set of parameters is min_samples_leaf=1,
min_samples_split=4, max_depth=None. The max_depth of this Decision Tree is 48 in my
environment, which is generally considered deep but given that it is a single tree classifier,
it does not boost time complexity to extreme levels. The total run time of the fine-tuning
was ≈ 10 minutes which is a rather high computation time based on the previously men-
tioned hardware (see Chapter 5). This measurements had to be done multiple times until
I have found the perfect pool of parameters which gives another time complexity layer to
this process.

Figure 5.9 shows the mean of the evaluation metrics grouped by each parameter i.e. the
means of the scores by the actual metric for each permutation are taken. These metrics are
represented with their test and train values too. The ‘x’ symbols mark the maximum scores
by each metric. The symbols connected to the mean F1 scores are especially important
because the grid search is refitted with F1 macro (see Section 5.2). These marks do not
necessarily represent the parameters which will be used by getting the best estimator from
grid search. It uses a different approach (ranking) for choosing the best estimator. The

39

Figure 5.9: The result of grid search broken down to the chosen
parameters

areas with fainter colour indicate the range of obtained mean test scores minimum to
maximum.

It can be seen by the unfolding of the mean train and test scores, that the lower values
for min_samples_leaf result in slight overfitting. However, as it is not a major difference
when talking about the deviation between test and train scores, I accepted the output
of grid search as optimal. Choosing the minimum leaf size higher would lead to a more
generic model, however the results show that such endeavor would decrease the mean test
F1 macro score by 1% and the mean test precision macro even more (≈ 1.5%). As it can be
seen, changing min_samples_split does not make that big of an impact on the outcome
because it is almost plateauing in terms of the mean test F1 macro score. On the other
hand, the choice of max_depth has high importance. Choosing it below 16 makes the model
underfitted, however, the values are almost constant after it for all three of the scores. It
can also be seen that a higher min_samples_leaf and min_samples_split value would
make the mean test scores less uncertain. Although, having higher max_depth decreases
the certainty. Mean test precision macro score tends to be more sensitive to these changes,
which means that the number of FP samples were very different thorough validation splits.

Figure 5.10: The mean test F1 macro scores of every iteration

40

The previous observation is also demonstrated by Figure 5.10, where the mean test F1
macro scores are plotted in each iteration. An iteration means an evaluation of a per-
mutation of values from the hyperparameter set. Each spike corresponds to a Decision
Tree with a new maximum depth from 10 to ‘None’. This figure shows a gradual increase
in scores. Also, the deviation between train and test scores gets bigger. The test scores
reach a limit after ≈ 500 iterations, which corresponds to a depth of 16. Figure 5.11 is a 3
dimensional plot about the different parameter permutations, which are represented with
the colored points. The color of the points correspond to their mean test F1 macro scores
mapped on the color bar. This figure tells us that a high maximum depth combined with
both low minimum samples per leaf and split result in a higher score. This means that the
estimator cannot be overfitted on the dataset, which is an interesting scenario. For better
scores, a more specific tree is needed which can be done by leaving this Decision Tree
implementation in scikit-learn with its default parameters. Only the min_samples_split
was fine-tuned because it changed from 2 to 4.

Figure 5.11: The result of GridSearchCV

5.3.2 Results

After the fine-tuning phase I validated and tested the model. The confusion matrix of
this process is shown in Figure 5.12. It can be seen that the number of FN samples is
good, as the goal is to reduce them as much as it is possible. There are also low numbers
of attack misclassifications, which means that the classifier can almost perfectly separate
different attack types. The number of FP samples is high for DoS (1), PortScan (2), and
Web-based (5) attacks. The most significant from these three is Web-based, because
the model finds ≈ 40% more of this attack than it would be optimal. The validation
and test scores generally do not have high deviation based on the characteristics on the
dataset.

41

Figure 5.12: The confusion matrix of validation and test phases

Figure 5.13 shows the test classification success by ROC AUC OVR macro and average
precision macro scores broken down to categories. It can be seen that the estimator scores
are high by both of the metrics for the 5 most represented categories. For the other two
categories, the scores start decreasing. The average precision score gets lower by a serious
amount. A single Decision Tree cannot handle these categories but the main goal is to
use the other estimators – which will be detailed later – to make classification better for
Web-based (5) and Bot (6) categories.

Figure 5.13: The ROC AUC OVR macro and average precision
macro scores by categories on the test data

42

5.4 Random Forest

Random Forest [10] is an ensemble algorithm which becomes more accurate, than single
Decision Trees by putting together the outcome of several – in many cases 100 or even
more – trees. An ensemble method is a classifier constructed by combining multiple
classifiers with the aim of having better performance, than a single one would have, i.e.
scoring better by a chosen metric (see Section 5.1) because the time complexity, CPU, and
memory usage will be significantly higher during the training stage [13]. In addition, the
validation and evaluation will be slower but this gained complexity is, in general, a worthy
trade-off because classifiers might not be trained too frequently in real life scenarios for
resources to be an issue. However, when high speed processing is required, higher testing
time can also be an issue, so complexity is not completely irrelevant. This issue might be
solved, e.g. by the power of cloud computing. The idea behind the combination of multiple
Decision Trees is that a single tree is not flexible enough when it comes to classifying new
samples. I used RandomForestClassifier [55] from the scikit-learn package and I will
use the parameter names from this implementation.

The Random Forest algorithm is a sophisticated way of evaluating multiple Decision Trees,
meaning that its concept contains several ideas to make the trees more adaptable. The
bootstrap parameter – when it is set to true – makes the classifier train each tree with
a resampled training data with replacement [10]. This means that these bootstrapped
datasets might have the same size as the original training data but they can contain each
row multiple times as they are randomly selected. The samples not selected by boot-
strapping are called out-of-bag (OOB) samples. These samples can be used to estimate
generalization score, which can be enabled with oob_score=True. Also the maximum
number of samples to build a bootstrapped dataset can be limited with the max_samples
parameter. It is set to the same size as the whole training data by default. This param-
eter can lead to much lower execution times. The process of bootstrapping is shown in
Figure 5.14. As it can be seen in the figure, Patrick and Gabriel got selected twice, while
Juliet and George was not selected to the bootstrap data.

Figure 5.14: Example of bootstrapping

Other crucial parameters are criterion, max_depth, min_samples_split, and
min_samples_leaf. These are inherited from the base estimator; their purpose is detailed
in Section 5.3. A unique parameter of the RandomForestClassifier is max_features,
which constraints the maximum number of columns used for searching the best split

43

on the nodes while training the trees. It is automatically set to
√

n_features, where
n_features is the number of columns. The selection of the feature subset is random
for each splitting step on each tree. Another parameter is n_estimators, which tells
the algorithm, how many trees should be constructed during training. Its base value
is 100, which means that 100 trees will be formed. The effectiveness of increasing this
parameter is limited because the performance usually plateaus. So in most cases, it is
enough to look for the plateau in the fine-tuning phase. Using the bootstrap=True,
max_feature=

√
n_features and n_estimators=100 parameters results in highly diverse

trees. This diversity can be observed, e.g. by the trees having different depths. Let
tree0(x), tree1(x), . . . , treen_estimators-1(x) be the predictions of the trees on sample x in
the Random Forest, which is a sample to be classified. The following formula can be
written to get the aggregated prediction of the trees proposed by Breiman [10]:

trees(x) = 1
n_estimators

∑n_estimators-1

i=0
treei(x). (5.13)

It is important to note that this implementation uses another technique for averaging,
which will be detailed later.

The process, where the method uses bootstrapped data and aggregates their outcome,
is called bootstrap aggregating or bagging [9]. The process is visualized in Figure 5.15.
Bagging makes this method more flexible to new data. Another benefit of bagging is that
it is less likely to overfit.

Figure 5.15: The process of bagging

The prediction of this implementation does not work the same way as Random Forest
was originally proposed. It uses the average of the probabilistic prediction of each tree
for classification [52]. This difference can also be noted while reading through the source
code. The following snippet is from the original scikit-learn repository on GitHub1.

1scikit-learn GitHub repository - ForestClassifier predict function https://github.com/scikit-learn/
scikit-learn/blob/3e6a39a73c2ca39e073e4b58117f59e92b3b2313/sklearn/ensemble/_forest.py#
L824 (Accessed: 2022-12-05)

44

https://github.com/scikit-learn/scikit-learn/blob/3e6a39a73c2ca39e073e4b58117f59e92b3b2313/sklearn/ensemble/_forest.py##L824
https://github.com/scikit-learn/scikit-learn/blob/3e6a39a73c2ca39e073e4b58117f59e92b3b2313/sklearn/ensemble/_forest.py##L824
https://github.com/scikit-learn/scikit-learn/blob/3e6a39a73c2ca39e073e4b58117f59e92b3b2313/sklearn/ensemble/_forest.py##L824

def predict(self, X):
...
proba = self.predict_proba(X)

if self.n_outputs_ == 1:
return self.classes_.take(np.argmax(proba, axis=1), axis=0)

...

This function takes the prediction probability of each tree, which is an n_samples ×
n_classes_ array consisting of probabilities indicating whether a sample is more or less
likely to be a class based on the prediction of the estimator. These probabilities are
calculated by the mean class probabilities of each tree. The RandomForestClassifier
takes the class with the highest probability for the classification.

Slightly less important parameters made for customization are weights. One of them is
class_weight, which is to make classification biased by weighting classes more or less.
In this implementation, the balanced_subsample value is used to calculate weights au-
tomatically. These weights assigned to samples are assigned to classes using the formula
n_samples_bs / (n_classes_ * np.bincount(y_bs)) – as it is stated in the documen-
tation of this classifier – where n_samples_bs is the number of samples in the bootstrapped
dataset, n_classes_ is the number of classes, y_bs is the labels for the bootstrapped data,
and np.bincount(y_bs) is a 1D array containing the frequency of each class in y_bs. The
other weight type is sample_weight, which can be added in the fitting stage. It requires
a 1D array with the length of the training labels with a weight for each row.

RandomForestClassifier is parallelized, meaning that it can train multiple trees at the
same time on different threads. This can be done because the construction of each tree
is fully independent from the others. This functionality can be used by setting n_jobs to
the number of destined threads to use. It is practical to use −1 as the value because then
the model will execute on as many threads as it is possible on the given hardware.

5.4.1 Fine-tuning

As the previous section describes, Random Forest combines multiple Decision Trees
in order to make a better prediction of the to-be-classified samples. Using more
trees to find the results make ensemble learning more computationally complex. How-
ever, single trees in most of the cases cannot perform well enough. To tune the
RandomForestClassifier I chose to use 2 of the formerly detailed parameters which
are the following: n_estimators and max_depth. The chosen values are shown in Ta-
ble 5.3. The tuning of min_samples_leaf and min_samples_split is also possible in
RandomForestClassifier, however, I did not want to constrain the model this way be-
cause it creates lots of different trees (n_estimators) during training. To optimize their
value is not feasible given the limited hardware resources. Also constraining them causes
decrease in the outcome, which might be a worthy trade-off in real-life scenarios (for more
generalized classification), but my goal was to make as good predictions as it is compu-
tationally possible. Every fine-tuning step included a base parameter set, which is the
following: criterion='entropy', bootstrap=True, oob_score=False, n_jobs=-1, and
random_state=42. The fine-tuning phase lasted ≈ 8 minutes. It is recognizable that a
new parameter for fine-tuning would radically increase the computational time, which is
not small even with only 2 parameters considering that all threads were utilized for this
task. The F1 macro score of the model with the tuned parameters is 0.97 on the validation
set after fitting on the whole training set.

45

Parameter Value range
n_estimators 5, 10, 25, 50, 100, 150, 200
max_depth 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, None

Table 5.3: The used parameter ranges

I chose the range of max_depth according to the used value set in Section 5.3.1 because
I wanted to see the differences between the trees made by Random Forest and a single
Decision Tree. It can be seen in Figure 5.16 (for details on what the figures illustrate, see
Section 5.3.1) that constraining the forest with max_depth=10 already makes an improve-
ment of ≈ 2% regarding mean test F1 macro score.

Figure 5.16: The result of grid search broken down to the chosen
parameters

Random Forest works better with shallower trees than a Decision Tree, which is because
there are obvious differences between the creation of a tree. E.g. one of them is that the
Decision Tree uses all features for building a tree but Random Forest uses only the square
root of the number of features. It can also be seen in this figure that there is a notable
difference (≈ 0.9%) by mean test F1 macro between max_depth=10 and max_depth=12.
After this threshold the score by this metric is slowly increasing until it reaches around
0.98. Mean test precision macro scores are also slowly increasing and it gains ≈ 1% from
10 to None. Towards the end for both of the former metrics, the train and test mean
scores are gaining distance, which means that overfitting is present. It depends on the
actual scenario but in a real-life environment – where the testing phase might have more
variance – it might not be suitable to use an overfitted estimator as the final estimator.
In this case, the goal is to make as good predictions as it is possible and this deviation
(≈ 2%), when using maximum depth, is acceptable. The max_depth=None parameter was
chosen by grid search. DecisionTreeClassifier made a tree with the maximum depth
of 48 by the max_depth=None. In Figure 5.17, the trees within this forest are counted
based on their depth. It can be seen in the figure that the majority of the trees are deeper
than the single Decision Tree presented in Section 5.3.1 which is because of the previously
mentioned random feature selection. It can also be seen that there is a high deviation
between the shallowest and deepest trees (35 levels).

46

Figure 5.17: The occurrence of depths within trees constructed
by RandomForestClassifier

The n_estimators parameter proved to be not as influential to the outcome. As it can
be seen in Figure 5.16, the values by mean F1 macro and mean precision (both train
and test) scores are almost constant. The only difference can be seen when we take
n_estimators=5, which is generally a low setting for Random Forest but it has also great
scores. There is always a trade-off when increasing the number of estimators because more
estimators cannot ruin prediction capabilities but it surely increases training and testing
time to the extent that it might not worth increasing it any longer. It can also be seen
that mean ROC AUC OVR (both train and test) scores are almost perfect by both of the
formerly mentioned hyperparameters. The final values for the fine-tuned parameters are
max_depth=None and n_estimators=200.

Figure 5.18: The mean test F1 macro scores of every iteration

The previously mentioned slow increase can also be seen on Figure 5.18. It is also more
recognizable in this figure how the deviation between train and test gets bigger and bigger

47

converging to the end. The spikes represent the different n_estimators values for each
max_depth. For details on what the figure illustrates see Section 5.3.1.

Figure 5.19 also shows that max_depth is more important of these two hyperparameters
because if the depth is not too constraining then the classifier will get decent scores even
with n_estimators=5.

Figure 5.19: The result of GridSearchCV

5.4.2 Results

The validation and test classifications can be seen in Figure 5.20 with the help of a mul-
ticlass confusion matrix. The number of FP samples notably reduced compared to the
classification by Decision Tree, shown in Section 5.3.1. However, the number of FN sam-
ples stayed around the same. Bruteforce (4) attacks could be detected almost perfectly
with this method in the test dataset. The good separation is probably because of the
characteristics given by brute force in general.

Figure 5.20: The confusion matrix of validation and test phases

48

It can be seen in Figure 5.21, that the average precision macro scores for Web-based
(5) and Bot (6) categories increased compared to the single Decision Tree approach (see
Figure 5.13). It is important to note that these classes are represented by low number of
samples, meaning that their slightest misclassification will decrease the scores by a large
amount.

Figure 5.21: The ROC AUC OVR macro and average preciosion
macro scores by categories on the test data

49

5.5 AdaBoost

Adaptive Boosting (AdaBoost) [21] is an ensemble learning method, which combines the
prediction of multiple weak learners with boosting to make classifications [17]. The main
idea of boosting is a sequential improvement by adding new weak learners that primarily
target misclassified samples. Weak learners are models, which make predictions close to
guessing, but a low degree of learning takes place. An example of a weak learner – which
is frequently represented alongside AdaBoost – is a decision stump. A decision stump is a
Decision Tree (see Section 5.3) which has only one level (i.e. max_depth=1). This means
that in each one of these stumps only 1 feature is used to split the data into 2 parts. As
I have mentioned, the learners are not trained independently of the others. Boosting is
based on their sequential training. Each one of the trees are correcting the weaknesses
of the previous models. This characteristics makes, it impossible to parallelize AdaBoost.
The main concept behind the algorithm is to use weak learners as estimators. I want to
test the capability of this model boosting strong learners to make their predictions more
accurate. This will be detailed in the following sections. The simplified version of boosting
in AdaBoost is shown in Figure 5.22.

Figure 5.22: The process of boosting

I used AdaBoostClassifier from scikit-learn [45], which implements two variations dif-
ferent from the originally proposed AdaBoost algorithm: SAMME (Stagewise Additive
Modeling using a Multi-class Exponential loss function), which is discrete and SAMME.R,
which is real AdaBoost. The main difference is that these variants support multiclass clas-
sification. They were proposed by Hastie et al. [21]. The default algorithm for this classifier
is SAMME.R and it can be changed through the algorithm parameter. In my work, I
sticked to the default algorithm because it is claimed that it typically converges faster
than SAMME with lower test error [50].

If SAMME.R is used, it is required to have a base estimator which can predict classes
with probabilities. I used DecisionTreeClassifier (see Section 5.3), which is suitable
because it has a method called predict_proba. This method returns an n_samples

50

× n_classes matrix, where each row will contain values indicating the probabilities of
the given sample belonging to the different classes. Here n_samples is the number of
samples and the n_classes is the number of categories in the training dataset. These
probabilities will be used to calculate the weighted probabilities – by which the data will
be classified – after fitting in each boosting iteration. This makes a key difference be-
tween SAMME and SAMME.R because in SAMME.R, estimators will not have dedicated
weights – other than 1 –, only the formerly mentioned probabilities will be used. The
used base estimator can be set with the base_estimator parameter. It defaults to a
stump of DecisionTreeClassifier, which is not ideal for every case. Further explo-
ration of this parameter will be shown in Section 5.5.1. Another useful parameter is the
learning_rate ∈ (0, 1]. It defines how much impact should a boosting iteration have.
With the n_estimators parameter, we can set the number of destined iterations within
the algorithm. This parameter makes predictions more stable. Higher n_estimators val-
ues are not recommended because the model cannot be parallelized. Thus, the model does
not have an n_jobs parameter which would utilize more threads for the algorithm.

In contrast with the previous models, the weights of AdaBoost are adaptively changed
in each step [21]. The samples start with equal weights and after each boosting step,
weights of correctly classified samples decrease multiplicatively, while weights of incorrectly
classified samples increase multiplicatively. Let w be the weight for each sample in the
training dataset. Its initialized value will be w = 1

n_samples . The update of weights can be
controlled via changing the value assigned for learning_rate. More formal and thorough
description of the weight update mechanism is out of the scope of this thesis.

A fundamental part of the scikit-learn implementation is to get an error score of the fitted
estimator at the start of every boosting step. If estimator_error <= 0 – as it is in the
source code – is True, then early stopping happens2. Early stopping can be executed
immediately when an algorithm achieves perfect scores within the destined iterations (i.e.
n_estimators). This error score can be calculated with the following equation:

estimator_error =
∑f−1

i=0 wi∑n_samples-1
j=0 wj

, (5.14)

where f is the length of the falsely predicted samples. Since weights are strictly positive,
the lowest estimator_error is 0, when everything is correctly predicted.

5.5.1 Fine-tuning

As I have mentioned previously, AdaBoost is not parallelizable resulting in a higher time
complexity. This is even more true during the fine-tuning process, when a lot of AdaBoost
instances has to be fitted and evaluated. One advantage is that AdaBoostClassifier
does not have too many parameters to tune, although its base estimator, which is a
DecisionTreeClassifier, has several hyperparamters itself. Differently from the fine-
tuning phase of other classifiers, I will include 3 fine-tuning approaches which center
around DecisionTreeClassifier mainly. The one with the highest scores – combined
with a reasonable time complexity – will be further detailed in Section 5.5.2. In this
section I will tune learning_rate and n_estimators, while using the same values of
max_depth, min_samples_split and min_samples_leaf that were obtained during the

2scikit-learn - early stopping in real AdaBoost https://github.com/scikit-learn/scikit-learn/
blob/b01f018c9b4e963d3b897906fd90a5de42c1a6b8/sklearn/ensemble/_weight_boosting.py#L595
(Accessed: 2022-12-05)

51

https://github.com/scikit-learn/scikit-learn/blob/b01f018c9b4e963d3b897906fd90a5de42c1a6b8/sklearn/ensemble/_weight_boosting.py##L595
https://github.com/scikit-learn/scikit-learn/blob/b01f018c9b4e963d3b897906fd90a5de42c1a6b8/sklearn/ensemble/_weight_boosting.py##L595

fine-tuning of DecisionTreeClassifier. The used parameter value ranges for each ap-
proach – considering only the AdaBoostClassifier parameters – is presented in Table 5.4.
Also the used default parameters for each AdaBoost model were base_estimator which
was set to the actual DecisionTreeClassifier and random_state=42. For each Decision
Tree, I chose criterion='entropy', class_weight='balanced', and random_state=42
as base parameters. The meaning of the used Decision Tree parameters were described in
Section 5.3.

Parameter Value range
n_estimators 5, 10, 25, 50, 100, 150, 200
learning_rate 0.1, 0.3, 0.5, 0.7, 0.9, 1.0

Table 5.4: The used parameter ranges.

The following approaches are not ordered based on their contribution, instead I listed
them chronologically as I have experimented with them.

5.5.1.1 First approach

This approach implements the main idea behind AdaBoost, which is stump learning.
Stump learning is when the predictions are made with trees having only one level [17]. This
means that only one statement divides the dataset in each tree. Constructing stumps is the
least time consuming method compared to the approaches, which will be described later
in Section 5.5.1.2 and Section 5.5.1.3. However, there are serious downsides for multiclass
classification as the following figures will show. The fine-tuning phase lasted ≈ 9 minutes.
The tuned parameter values for this approach are the following: learning_rate=0.1 and
n_estimators=10.

Figure 5.23: The result of grid search broken down to the chosen
parameters

In Figure 5.23 it can be seen that both mean F1 macro and mean precision macro are
low, which means that the model has bad classification potential. These metrics on
n_estimators both have high deviation between minimum and maximum mean scores
through the entire value ranges, which means that the model is completely biased by how
the StratifiedKFold cross-validation (see Section 5.2) splits the dataset. Also, it is too

52

sensitive to little changes, which is not ideal because in real world scenarios the continu-
ity of predictions is important to guarantee the performance of the used method. The
learning_rate parameter has also high deviation except for 0.9 and 1.0. Mean ROC
AUC OVR scores were lower than for the methods discussed in earlier sections for both
parameters. Train and test scores by all three mean metrics are the same and are also
low, which indicates underfitting.

Figure 5.24: The mean test F1 macro scores of every iteration

Both train and test mean F1 macro scores are low which can be seen through grid search
iterations on Figure 5.24. It can be deduced from this, that at the end of the fine-tuning
phase even the model with the best scores will be underfitted.

5.5.1.2 Second approach

To find a more usable AdaBoost model, I first made experiments to see that how the
max_depth of the base estimator changes the outcome of the AdaBoostClassifier. This
usage of AdaBoost might be unconventional based on the properties proposed earlier in this
section as the base estimators will not remain to be stump learners. The main idea behind
this approach is that I should be able to specify a Decision Tree with a just appropriate
depth. I started exploring this parameter which resulted in a to-be-expected outcome: the
scores and also the computational time increased. The fine-tuning phase lasted ≈ 30 min-
utes, which is around 3 times longer than the first approach described in Section 5.5.1.1.
The resulting values for the parameters are the following: learning_rate=1.0 and
n_estimators=200. The max_depth of the DecisionTreeClassifier changed to 7.

Firstly, I explored the max_depth of DecisionTreeClassifier in the range of 1 to 15. The
exploration metric was F1 macro score. The outcomes of this can be seen in Figure 5.25.
I chose 7 as max_depth because it is the first good score after the knee point of the graph.
The evaluations were made with the same base parameters as described earlier but with
the additional max_depth modification.

After selecting the base estimator with the ideal max_depth, the same fine-tuning process
was used for tuning n_estimators and the learning_rate. As Figure 5.23 shows, we can
achieve radically better results by all three metrics with this new maximum depth. Using
5 and 10 for n_estimators causes the predictions to be slightly uncertain as it can be seen

53

Figure 5.25: The exploration of max_depth within the base esti-
mator of AdaBoostClassifier

on the difference of minimum and maximum mean scores. The n_estimators parameter
reaches a plateau after 100, however, the ranking will consider 200 as the best value for
the parameter. It can also be seen that with increasing n_estimators the model becomes
more reliable. The learning_rate does not have reasonable contribution to the result.

Figure 5.26: The result of grid search broken down to the chosen
parameters.

As it can be seen in Figure 5.24 the n_estimators will be better at changing the prediction
success out of these 2 parameters. It can also be deduced that learning_rate does
not have a significant contribution to the outcome because the graph will stay almost
identical until the end. Though, the predictions tend to be lower when higher numbers of
n_estimators are combined with lower learning_rate.

The chosen parameters for the model were n_estimators=200 with the learning_rate
being 1.0, which is arguable in the light of Figure 5.26, however, I chose to stick with the
outcome of grid search because I would like to make comparable results.

54

Figure 5.27: The mean test F1 macro scores of every iteration

Figure 5.28: The result of GridSearchCV

5.5.1.3 Third approach

The main concept behind this approach is that I have fine-tuned a single
DecisionTreeClassifier in Section 5.3.1. I thought that it would be interesting to see
how AdaBoostClassifier can affect the predictive success of an ideal fully developed De-
cision Tree. This DecisionTreeClassifier had max_depth=16, min_samples_leaf=1,
and min_samples_split=4. The fine-tuning of this AdaBoost variant required a lot
of computation time: ≈ 53 minutes. The tuned parameter values are the following:
learning_rate=0.9 and n_estimators=200.

It can be seen in Figure 5.29 that for all three of the metrics the train and test scores are
identical which means the model is too specific. I expected this result because the base
estimator alone is too specific for boosting.

55

Figure 5.29: The result of grid search broken down to the chosen
parameters

The specificity of the model can be seen clearly in Figure 5.30, which shows that train
scores are constantly 1.0. Although, test scores are affected by just a notch by the used
parameters.

Figure 5.30: The mean test F1 macro scores of every iteration

This model would be perfectly suitable for this dataset, however, the goal was to make
more generic estimators which might give a more predictable classification when a slight
change occurs in the traffic. Its run time also makes it very unlikely to be deployed in a
real life environment.

5.5.1.4 Summary

Thus, the first approach showed underfitting and the third approach granted too specific
classifications, I chose the best estimator from the second approach. It will be evaluated
on the test set in Section 5.5.2. The parameters of the resulting model with their values
are the following: learning_rate=1.0, n_estimators=200, random_state=42, and the

56

base_estimator a DecisionTreeClassifier with the following parameters and values:
criterion='entropy', max_depth=7, class_weight='balanced', random_state=42.
The F1 macro score of the model with the tuned parameters is 0.95 on the validation
set after fitting on the whole training set.

5.5.2 Results

After the fine-tuning, I decided to use the second approach as it provided the most rea-
sonable estimator. This section will detail the validation and test phase of that model. It
can be seen in Figure 5.31 that the number of FN samples increased compared to single
Decision Trees which is unfortunate and makes this model not suitable for this scenario.
The increment is present in DoS (1) and PortScan (2) categories.

Figure 5.31: The confusion matrix of validation and test phases

Based on Figure 5.32 only the DDoS (3) and Bruteforce (4) categories could be op-
timally classified. The first three categories got worse compared to the Decision Tree
approach and also the classification problems in Web-based (5) and Bot (6) categories
did not get better – in terms of average precision macro score – in the process. A possible
solution would be to increase the max_depth parameter in order to make better predic-
tions, however, the time complexity is high even in this case which will be further detailed
in Section 5.7.

Figure 5.32: The ROC AUC OVR macro and average precision
macro scores by categories on the test data

57

I would like to mention that I have evaluated the third approach too and it made similar
output as the Random Forest method mentioned in Section 5.4.2 but the time complexity
got out of hands because the fit time of one model was ≈ 32 minutes on the whole training
data.

58

5.6 XGBoost

The eXtreme Gradient Boosting (XGBoost) [12] model is the most complex approach used
in this thesis. In this section, I will summarize the top-level properties of the model with
some details. The further exploration of the model is not in the scope of this thesis. I used
XGBClassifier from the xgboost package [70]. The reason why I picked this classifier is
because I wanted to include a model based on gradient boosting as the last classifier in the
comparison. The first model I tried was GradientBoostingClassifier from the scikit-
learn package, however, I quickly noticed that it is not as optimized as I wanted it to be.
In order to provide a better result, I tried this XGBClassifier as it is a more recent model.
Another criterion was to have a model which can utilize multiple CPU cores and also the
possibility of GPU usage was important. The power of the GPU computation is that it
can usually make run times much lower. It is important to note that not every segment of
a machine learning model can be successfully converted to be executed on GPU. Although
most of the algorithms used in XGBoost can be accelerated by GPU. This feature is rather
helpful in the fine-tuning phase as I will demonstrate in Section 5.6.1. This ML model has
also a very good reputation in the machine learning community based on its performance
and the wide variety of customization possibilities required by a classification or regression
task.

Similar to AdaBoost, XGBoost is based on boosting (see Section 5.5), however, it builds
different kinds of weak learners. It builds gradient boosting trees which are also shallow
Decision Trees but they are regression trees and built in a different manner [12]. First an
initial score has to be assigned to XGBoost which can be set with base_score that defaults
to 0.5. The key component of building gradient boosted trees is calculating residuals for
each row by getting the differences between the observed values (i.e. the label of each row)
and the predicted values (which is initially the base_score). The residuals will be used
to calculate the so-called similarity score for each leaf that is present in the actual tree.
To calculate similarity scores the following equation can be written [63]:

similarity = (
∑n

i=0 ri)2

n + lambda
, (5.15)

where n is the number of residuals present on the leaf, lambda is a regularization parameter,
and ri is the ith residual on the leaf. This formula is only correct if the loss function is
the squared error (see Equation (6) in the work of Chen et al. [12] for the more general
formula). In this section, I will use this assumption, as it is the most common loss function.

Regularization is used to make the algorithm more conservative to change. While doing
so, the variance of the model decreases and the bias increases, i.e. it is used to prevent
overfitting. XGBoost contains L1 (Lasso) and L2 (Ridge) regularization for this purpose.
The parameter for L1 regularization is alpha, which defaults to 0 and the parameter for
L2 regularization is the previously mentioned lambda and its default value is 1. Further
detailing of regularization is not in the scope of this thesis as the regularization parameters
will be left on their defaults, while tuning and evaluation.

For each value of each parameter, XGBoost could make a stump and the model could
calculate the gain from the similarity scores of each stump – to see, which feature has
the best splitting potential –, but it would be extremely time consuming. To avoid this
XGBoost implements the Approximate Greedy Algorithm. Greedy algorithms in general
are searching locally for the best possible solution, meaning that they are not taking into
account its effect in the long run. Firstly, the amount of splitting points to be considered
is reduced by this algorithm, which is achieved by using only quantiles of the values.

59

Secondly, the algorithm picks the highest gain each time while constructing the trees. The
gain is calculated by the following equation [63].

gain = similarityleft + similarityright − similarityroot, (5.16)

where similarityroot is the similarity score for the root node of the tree, similarityleft is
the left child of it and similarityright is the right one. Roughly speaking, similarityleft +
similarityright is the highest when the residuals are homogeneous inside the left and right
sets. XGBoost chooses the best split according to the gain. The model can use multiple
cores for this computation by splitting the dataset into multiple parts and executing
them in parallel. It summarizes the outcomes with an approximate histogram and defines
weighted quantiles in it, which can be used in the previously described greedy algorithm.

It is important that these trees can be pruned. Pruning of a tree is used for making the
classification more generic by limiting the formation of a new leaf. It can be set with the
gamma parameter – which defaults to 0 – and it controls the minimum amount of gain an
additional leaf node should have to be added to the tree.

For calculating the output value for a sample the following equation can be written [63].

output = base_score +
n_estimators∑

j=0
outputj ∗ eta, (5.17)

where n_estimators is the number of trees created in the learning phase of XGBoost,
base_score is the initial score – which is 0.5 by default –, eta is the learning rate and
outputj is the output value in the jth tree, which can be calculated with the following
equation [63].

outputj =
∑n

i=0 ri

n + lambda
, (5.18)

where n is the number of residuals in the leaf node, lambda is the L2 regularization
parameter and ri is the ith residual in the leaf. Without regularization and learning rate,
we would simply add the average of the residuals successively from each tree. lambda and
eta make it so that we only take a step toward this local optimum.

XGBoost implements several techniques to make execution faster when the used data is
huge. Formerly I have mentioned some of them, e.g. Approximate Greedy Algorithm and
parallelization. It also uses Cache Aware Access, which optimizes the cache memory of the
CPU. The main benefit of this is that the CPU can interact with its cache memory with the
lowest latency compared to memory or page files. Another important asset of the model
is the support for Out-of-Core computation when the data is too large to fit into the cache
and the RAM. It compresses the dataset to be used from the page file on the storage. This
makes communication faster and with a good CPU the decompression-latency trade-off is
favourable because the CPU can decompress faster than the data could be read. Also, it
can compress multiple blocks of the dataset and store them on separate drives. There are
several parameters which can directly reduce computation time as well. One of them is
subsample (defaults to 1, meaning that it will use the whole dataset for training), which
is to control the amount of data used for training. Also, there are parameters to control
the number of features used while building the trees. The colsample_bytree parameter
constrains each tree, colsample_bylevel constrains each level and colsample_bynode
constrains each node with a fraction of the whole feature set to be used.

60

XGBoost is widely customizable, which results in a high number of parameters. I have
written about some of them in this section, however, there are some more to be added.
One of them is max_depth, which constrains the number of levels a gradient boosting
tree can have and it defaults to 6. It controls the fit of the model on the dataset. It
is notable that higher numbers might result in high memory usage. Another parameter
is min_child_weight, which sets the minimum sum of instance weight in a child node.
It constrains the splitting of the child nodes. If the squared error is the loss function,
then it is the minimum number of samples on a leaf node. To use the histogram based
approach detailed earlier the tree_method should be set to 'hist'; to use it with GPU
it should be set to 'gpu_hist'. To use the exact greedy tree construction approach
tree_method='exact' should be used. In this thesis I want to explore both CPU and
GPU computation so I will include 'exact' and 'gpu_hist' in Section 5.6.2. With
predictor we can set the prediction architecture. For CPU prediction it should be set to
'cpu_predictor' and for using GPU computation it should be set to 'gpu_predictor'.

5.6.1 Fine-tuning

I chose to tune n_estimators, max_depth and eta which is more than the used hy-
perparameters for Random Forest and AdaBoost, however, considering the number of
hyperparameters the XGBClassifier has it is not sufficient. To reduce time complex-
ity of fine-tuning, I chose to ignore L1 and L2 regularization and min_child_weight
also. The value ranges used for tuning the classifier can be seen in Table 5.5.
The base parameters were the following for each iteration: tree_method='gpu_hist',
gpu_id=0, objective='multi:softmax', random_state=42, seed=42, n_jobs=-1 and
predictor='gpu_predictor'. As it can be seen, I chose the n_estimators values low
compared to other ensemble methods detailed before. Choosing them is based on a prelim-
inary evaluation with this estimator. Higher values did not result in considerably better
results and also they were far more time consuming. I tuned the selected hyperparam-
eters of XGBClassifier with GPU acceleration as it is a less time consuming approach.
However, it is important to note that this classifier cannot run only on GPU meaning that
CPU will also be used. The total fine-tuning time was ≈ 11 minutes. After fine-tuning, the
optimal parameter values chosen by grid search were n_estimators=30, max_depth=11,
and eta=0.75. The F1 macro score of the model with the tuned parameters is 0.99 on
the validation set after fitting on the whole training set.

Parameter Value range
n_estimators 10, 15, 20, 25, 30
max_depth 4, 5, 6, 7, 8, 9, 10, 11, 12
eta 0.1, 0.25, 0.5, 0.75, 1.0

Table 5.5: The used parameter value ranges

As it can be seen in Figure 5.33, the increment in n_estimators does not make a huge
difference in the outcome. All three metrics stay high from 10 to 30 but around 1%
improvement can be noticed from the lowest to the highest parameter setting in terms of
mean precision macro and mean F1 macro scores. Also, it can be seen that the deviation
between minimum and maximum scores is higher than usual which means that the model
might not be perfectly certain. This unfolding tends to close while increasing the value,
which is reasonable because relying on more estimators (i.e. gradient boosting trees) in
the classification process will always lead to a more stable solution. As the figure shows,
increasing max_depth will make a bigger contribution in the fine-tuning process as it boosts

61

mean F1 macro scores by ≈ 2% from its minimum value to its maximum. The minimum
and maximum scores also get closer towards the end, which is also reasonable as a more
developed tree will be more accurate in classification even with gradient boosting trees.
The eta parameter has around the same amount of significance in the tuning process as
max_depth, however, a bigger eta means a more stable F1 macro score. The ROC AUC
OVR for all 3 of the parameters gives a different result than for the estimators described
before (see Section 5.3.1, Section 5.4.1, and Section 5.6.1). The classification by this score
tends to be less stable for these parameters when their values are smaller and more stable
towards the end.

Figure 5.33: The result of grid search broken down to the chosen
parameters

In Figure 5.34, we can see that the difference between training and testing increases with
higher train performance in general. As it is not a high deviation, I will consider the
outcome as an optimal parameter set given the constraints of my environment. The
wider peaks in the figure represent the value changes within the n_estimators parameter
range. The importance of max_depth and learning_rate tends to be higher when the
n_estimators value is higher.

Figure 5.34: The mean test F1 macro scores of every iteration

Figure 5.35 shows that a higher eta and max_depth will result in better scores each time
but n_estimators is not that effective in optimizing the results. A high n_estimators

62

combined with both high learning_rate and max_depth performs the best based on my
measurements. Tuning only the n_estimators parameter would make the training and
testing procedures longer with almost no positive consequences.

Figure 5.35: The result of GridSearchCV

5.6.2 Results

After fine-tuning, I validated and tested the model. As previously mentioned, I used both
'exact' and 'gpu_hist' approaches for the tree_method parameter. The 'gpu_hist'
uses a histogram-based estimation calculated on GPU which aims to be faster and suitable
for large datasets. The used dataset is not huge considering the sizes used in real life
scenarios but I would like to present the differences that these two values make. The
model was tuned with 'gpu_hist' but I assume that the tuned parameter values will be
appropriate for 'exact' too. To summarize, the only difference between the two model is
the value of tree_method parameter.

As it can be seen in Figure 5.36, the number of FN samples is low for each of the categories
in both scenarios. The main difference can be spotted when we look at the FP samples.
The histogram based approach makes more FP classifications than the exact approach.
This is because the former classification is based on a kind of estimation. This phenomenon
is mostly present within the misclassification of BENIGN (0) samples to Web-based
(5) attacks which gets fixed with the 'exact' approach. Neither of these tree construction
algorithms can assess the FP cases within the Web category.

Figure 5.37 shows that the difference between the two approaches is that the Web-based
(5) category has better average precision macro score. This is a worthy trade-off as it will
be detailed in Section 5.7.

63

(a) GPU histogram-based tree construction

(b) exact greedy tree construction

Figure 5.36: Results represented with confusion matrices

64

(a) GPU histogram-based tree construction

(b) exact greedy tree construction

Figure 5.37: The ROC AUC OVR macro and average precision
macro scores by categories on the test data

65

5.7 Summary

In this section, I would like to summarize the performance of the classifiers by two mea-
sures: time complexity and classification success. An additional plot will also be granted
at the end of this section which shows the effectiveness of the classifiers used in this thesis
by the detection of TN samples. After that, I would like to compare my results to some
results published in other papers.

As it can be seen in Figure 5.38, the different models resulted in different train and test
times. The plot for DecisionTreeClassifier (DT) shows a relatively small training
time and it can predict within the least time. This is because it uses only one fully
developed tree. XGBClassifier with 'gpu_hist' (XGB:gpu_hist) took the least time
to be trained which is the result of GPU acceleration. This model also grants a low
test time. One difference of the 'exact' parameter (XGB:exact) is that it takes 38.6
seconds more to train, however, the trade-off is worth it as it will be presented later. The
AdaBoostClassifier with the second approach (ABC) takes way too much time to train
(1400 seconds) and also, the test time is much higher than for the other models which is
the result of trees being too deep in the model and also the lack of parallelization. This
makes ABC unusable for this dataset considering a real life scenario. It is important to
note that the hardware capabilities of my computer are not optimized for IDS purposes,
however, I assume that these values for time complexity are too large for even architectures
built for this purpose. RandomForestClassifier (RF) – as it is referenced in many cases
– is an all-around method suitable in various scenarios. It has reasonable train and test
times despite the fact that it constructs 200 trees.

Figure 5.38: The train and test times of the models

Figure 5.39 shows the scores achieved with each estimator by the metrics used previously:
precision with macro averaging, recall with macro averaging, and F1 score with macro
averaging. It can be seen by the scores that XGB:gpu_hist produces the lowest precision
macro and F1 macro, which is because it makes more FP classifications than the other
models but the train time of the model is outstanding. As it was stated before, it is
generally the decision of the developer whether the model is applicable for the use-case;
the anomaly-based approaches usually have a relatively high amount of FP samples. DT
provides good base scores with only one tree, however, RF and XGB:exact boosts all
metrics up by 0.01 which can be useful in some cases. The difference between the latter two
approaches are the train and test times which make RF the better. AdaBoostClassifier
with the second approach gives lower scores than a single Decision Tree which makes this

66

model not suitable for this dataset. Also, as I have mentioned earlier when I evaluated
the third approach (see Section 5.5.1.3), it gave similar results to RF and XGB:exact,
however, the used time for training was even higher.

If time would be the only criterion, I would choose XGB:gpu_hist for my main model,
however, if all train and test times and scores are important, then RF is the most suitable.
If the versatile customization of the model is also needed, then XGB:exact should be used
because this model is built for the complex constraining of its parameters and performed
well on the dataset. I would not use DT because the more trees are used, the more certain
the classification of a model is.

Figure 5.39: The scores achieved on test dataset for each model

Lastly, I would like to show the detection counts of false negative samples in Figure 5.40.
After every evaluation step, I stored the FN samples of the classification. Then I could
count that how many times a sample could be found as false negatively classified. The
number of FN samples ideally would be 0 but it is not a realistic expectation. To give a
fair representation of the models, I chose to use only XGB:exact from the two XGBoost
approaches alongside DT, RF and ABC.

Figure 5.40: The grouping of false negative samples by the times
that they could be detected

If the sample was present 4 times in the resulting dataset, then I plotted it as 0-times
detected. This means that none of the estimators could classify those samples, which

67

means that these attacks would get through every anomaly-based intrusion detection sys-
tem composed by the models. This is fortunately a relatively small set of data. The figure
shows that Bruteforce samples could always be classified as attacks, which is a good
result. Also, only a few port scan and web attacks are getting through. Larger numbers of
Denial of Service and bot attacks could not be classified as attacks. This is a good result
even with DoS, because a DoS attack might not be usually successful within 20 flows.
Also, there were more DoS attacks than other attacks.

5.7.1 Comparison

Bhattacharya et al. [7] used a different approach on feature elimination. Their strategy
was to use PCA and PCA-firefly algorithms. In their work, they proposed several models
combined with this preprocessing method but I chose only the two best performing models.
These are XGB-PCA and Firefly and RF-PCA and Firefly. Figure 5.41 presents their
accuracy and recall macro scores next to mine which are RF and XGB:gpu_hist. I
chose the histogram-based XGBoost because the paper states that GPU was used for the
models. The comparison is not perfect as I chose to drop 2 attack types – as it was
mentioned previously in Chapter 4 – but their representation does not make a significant
difference. It is because these attack types are not represented enough well in the dataset.
The differences can be spotted by the recall macro metric which shows that my models
are scoring significantly better. The accuracy score does not have that high deviation in
this case. I found that lot of researchers are showing the classification success of their
models by accuracy on this dataset. This measure is not powerful enough in my opinion
because accuracy does not take into consideration the imbalance of the dataset. It should
be combined with precision for a better representation or using F1 score instead.

Figure 5.41: The comparison between the proposed models of
Bhattacharya et al. and my models

Panwar et al. [36] also used a specific technique in their work to reduce the number of
features. Their goal was to use as minimal number of features as it is possible. They
used the Weka machine learning software for the models. I chose to include the two best
performing models from their work, which are J48 (CSE with Naive Bayes) and J48 (CSE
with J48). I compared them with RF and XGB:exact as these models are the best by

68

F1 score on CICIDS2017 in my thesis (see Figure 5.42). The difference that makes the
comparison not perfect is that they used separate models to detect BENIGN from each
category, however, I have made single models for multiclass classification. This way they
could reduce the number of features in each train set according to the needs of a category
to be classified correctly, which makes their run times lower. Also, they could tune the
hyperparameters of the models for each grouping, which improves the classification of the
categories. These measures are not likely in a real life scenario as it is not a realistic task
from an IDS to distinguish only one attack from the normal behaviour.

Figure 5.42: The comparison between Panwar et al. models and
my models broken down by categories

The included models from the paper published by Panwar et al. made significantly better
classifications on categories with lower representatives (i.e. Bot and Web-based) by F1
score. The DDoS category could be classified by my proposed method slightly better,
which is a good result considering the differences in our classification strategies. Detecting
DDoS attacks has a big emphasis in an anomaly-based IDS, especially today, when these
attacks are occurring more frequently. For the other categories, there is only a low amount
of deviation between our scores.

In Figure 5.43, another comparison is present, which is based on the classification of
DDoS attacks. I used the work of Roopak et al. [43] for this comparison. They used
neural networks for classification and proposed 4 different deep learning models in this
context, which are the following: 1dcnn (1D Convolutional Neural Network), mlp (Multi-
layer Perceptron), lstm (Long Short-Term Memory), and cnn+lstm (Convolutional Neural
Network combined with Long Short-Term Memory). The used models utilize Keras on
Tensorflow. These estimators generally represent more complex models than the ones
proposed in my thesis. I chose XGB:exact for this comparison as it was the best scoring
estimator for this attack type. As it can be seen, all deep learning models scored sig-
nificantly worse than my model which made almost perfect scores by both precision and
recall. The cnn+lstm model was the best among them which scored outstandingly high by
these metrics compared to the other deep learning models. The run time of these models
was not detailed, thus I cannot make conclusions based on it, however, the complexity of
correctly building a neural network can be high and requires in-depth knowledge of several

69

type of these networks. My approach with XGB:exact grants a more easily interpretable
model which scores better on DDoS attacks with only a short fine-tuning phase.

Figure 5.43: Comparison between the models proposed by
Roopak et al. and my models based on DDoS clas-
sification

70

Chapter 6

Corrections in CICIDS2017

As I have mentioned in Section 3.4, the original CICFlowMeter contains several flaws
which result in a less reliable dataset. In this chapter, I would like to demonstrate the
difference between the original CICIDS2017 and the corrected RP dataset proposed by
Lanvin et al. [29]. The procedures and figures will stay the same as the ones previously
discussed in Chapter 5 during each step.

6.1 Preprocessing

The corrected database consists of 5 CSV files representing the days of the workweek.
The first notable difference after concatenating the corrected CSVs is that the resulting
dataset contains less samples for each attack type (excluding Heartbleed) than the orig-
inal dataset had and this is because of the corrections described in the work of Engelen
et al. [15]. The corrected dataset also contains the additional port scans (i.e. Port_scan)
described in Section 3.4. The representation of attack types can be seen in Table 6.1.

Category Number of occurence
BENIGN 1597836
PortScan 159579
DoS Hulk 158470
DDoS 95144
Port_scan 64185
DoS GoldenEye 7567
DoS slowloris 4001
FTP-Patator 3973
SSH-Patator 2980
DoS Slowhttptest 1742
Bot 738
Web Attack - Brute Force 151
Infiltration 32
Web Attack - XSS 27
Web Attack - Sql Injection 12
Heartbleed 11

Table 6.1: The categories of the samples in the corrected dataset

71

The concatenated dataset also contains 5 additional columns, which are Flow ID, Src IP
(i.e. source IP address), Dst IP (i.e. destination IP address), Timestamp, and Src Port
(i.e. source port). These columns are categorical, thus the conversion to numerical features
would be sufficient for the machine learning models. However, they are dropped because
the Flow ID and Timestamp does not contain information for classification purposes, Src
IP and Dst IP would make the models learn too specific relations (i.e. make it unable to
be deployed in other networks) and Src Port is random for some of the attacks executed
while the creation of the dataset which would bias the learning process. To follow the
procedures in Chapter 4, I dropped Heartbleed and Infiltration as these attacks do not
have enough samples in the dataset. I have tried to drop zero variance features too, but
there was none which is already a big difference compared to the original dataset.

I decided to merge Port_scan attacks into PortScan, this makes the variety of port scans
even higher. These port scans represent the same attack type but executed on different
parts of the network. I have also combined Patator attacks into Bruteforce, Denial of
Service attacks into DoS and web attacks into Web-based category as it was described in
Chapter 4. In terms of labeling, I chose to use the numeric notation presented previously
in Table 4.3. However, this scenario would result in changes in the numeric notation
because some attacks changed place in their occurrence within the dataset. After cleaning
the data, I have split it by the ratio of 60 − 20 − 20 to train, validation and test sets
according to the previously described procedure for the original dataset.

(a) before sampling

(b) after sampling

Figure 6.1: Occurrences before and after sampling

For sampling strategy, I chose to manipulate the categories that were also sampled in
the original dataset which are the following: BENIGN, Bot and Web-based. First, I
sampled down the BENIGN samples from 951446 to 345000 which is for reducing the
time complexity of the training phase. I oversampled the Bot from 438 to 1000 and Web-
based from 114 to 500. These procedures were made in order to make the attacks and
benign samples to around the same level as it can be seen on Figure 6.1.

72

Feature elimination of the sampled dataset gave interesting results compared to the one
done for the original dataset. I have used the same way of evaluating the dataset with an
each time smaller feature set on RandomForestClassifier (combined with F-test) and
it gave the results shown in Figure 6.2. This figure shows that even with having only
10 features, the RandomForestClassifier can achieve decent scores. I chose the most
optimal threshold for features to keep, which is 35 columns as a small decrease happens
after it. The remaining number of features were 32 in the case of the original dataset but
with an ≈ 2% worse score.

Figure 6.2: F-test iterations

After each preprocessing step, I have evaluated a RandomForestClassifier. The classifi-
cation success can be seen in Figure 6.3. This figure shows that the scores are better than
for the original dataset and stay around the same during each process.

Figure 6.3: Results of preprocessing stages

73

The main goal of preprocessing in my case is the reduction of run time. The summary of
the changes by run times can be seen in Figure 6.4. It shows an ≈ 40% fit time reduction
from the start of preprocessing to the end of feature elimination, which is a considerable
amount. The validation times stay around the same during these three stages.

Figure 6.4: Times passed during fitting and validation

6.2 Fine-tuning summary

I used similar parameter ranges for hyperparameter fine-tuning as proposed in Chapter 5.
I will not detail the fine-tuning process as the main idea behind it was captured in that
chapter. Table 6.2 provides the hyperparameter sets for each model compared to the
previous parameter sets of the models tuned on the original CICIDS2017 dataset. It can
be stated based on these tables that the corrected dataset requires shallower trees which
is good as it makes run time faster. It also means that the data is easier to separate. For
the ensemble methods a lower amount of n_estimators is needed, which also reduces run
time.

Classifier Parameters
DT min_samples_leaf=1, min_samples_split=4, max_depth=None
RF n_estimators=200, max_depth=None
ABC n_estimators=200, learning_rate=1.0
XGB n_estimators=30, max_depth=11, eta=0.75

w�
Classifier Parameters
DT min_samples_leaf=1, min_samples_split=4, max_depth=22
RF n_estimators=25, max_depth=26
ABC n_estimators=150, learning_rate=0.3
XGB n_estimators=20, max_depth=10, eta=0.5

Table 6.2: The used parameters for the classifiers – over their base parameter set –
detailed in Chapter 5 compared to the novel parameters

The time complexity of fine-tuning is not comparable, because of the deviation between
the datasets, i.e. they differ in the amount of training samples within categories and also
in the number of features used.

74

6.3 Evaluation summary

As for the evaluation part, I chose to include only the comparison between models with
the same methodology as it was detailed in Section 5.7. This includes, e.g. time com-
plexity analysis, which can be examined in Figure 6.4. Both training and testing times
reduced compared to the models used for the original CICIDS2017 dataset. This is be-
cause of the previously described model properties, i.e. less max_depth for all four models
and less n_estimators for the three ensemble methods. E.g. AdaBoostClassifier with
the second approach (see Section 5.5.1.2) uses only ≈ 58% of the training time of the
AdaBoostClassifier benchmarked in Section 5.7. Also, the training time for RF de-
creased by 29.8 seconds and the training time of XGB:exact dropped by 23.9 seconds.
The testing times also decreased by a lot resulting in the decrease of RF test time by
≈ 87%.

Figure 6.5: The train and test times of the models

Based on the scores shown in Figure 6.6, the ensemble methods all performed better than
a single Decision Tree which was not the case with the previous evaluation on the original
dataset. As it can be seen, all ensemble methods perform around the same. ABC produces
the best scores overall and XGB:gpu_hist has the lowest scores.

Figure 6.6: The scores achieved on test dataset for each model

75

Looking at its training and testing time, ABC performs well but it has higher time
complexity than the others. For a use-case when the training and testing both should be
fast then the XGB:gpu_hist should be used in my opinion. When both scores and run
times are important, RF would be an ideal choice.

Figure 6.7: The grouping of false negative samples by the times
that they could be detected

Figure 6.7 shows the same figure as presented in Section 5.7. The number of 0 − times
detected attacks are low and narrow down to port scans and Denial of Service attacks. I
would like to mention that port scans are not harmful for the systems, i.e. they are just
for the reconnaissance of the infrastructure meaning that they have less weight in my eyes
when looking at the results. As this figure shows, all DDoS attacks could be detected.

76

Chapter 7

Final thoughts

One of the main conclusions I have is that the corrected dataset should be used for IDS
researching purposes. After seeing the difference between the original CICIDS2017 dataset
and its corrected version, I can tell that the original gives an invalid picture of the pro-
posed attack types. It was not well engineered because it contains several flaws and its
documentation is not detailed enough to get a closer concept of it. However, as I have
mentioned before, I have not read anything concerning about the dataset before I started
using it. The corrected dataset is much more reliable in giving a proper picture about
the presented attack types. However, I would not say that the preprocessing, fine-tuning
and evaluation on CICIDS2017 was pointless because at least I could demonstrate the
difference the correction makes, and the used methodologies are closely related for these
datasets. Also, I could learn from these mistakes and now I know what to look for when
I would like to validate the comprehensiveness of a dataset. Another conclusion is that
a more complex dataset should have been used in which there are more attacking tools
because it could give a more realistic result. It could lead to a more realistic separation
of train, validation and test sets where there are zero-days – for the IDS – in the valida-
tion and test sets. Also, a more recent dataset would be better to use, however, I read
about how promising CICIDS2017 is and I thought that an older, already proven dataset
would be a safe way for my thesis. The attacks used within the dataset are mostly out-
dated by now, however, this aspect does not make my results less valuable as I wanted to
demonstrate the anomaly-based attack detection.

In terms of the used models, it can be concluded that ensemble learning methods are
usually better at making accurate predictions than a single Decision Tree, however, in
some cases the time complexity makes the model not likely to be used. E.g. AdaBoost
performs well on the corrected data, however, its run time is much longer than for other
methods. Intuitively a single Decision Tree would be the most straightforward to use
because it offers a smaller train time, however, as it was shown in Chapter 6 it was not
the fastest model. XGBoost is the most flexible solution out of the 4 classifiers presented.
It grants great possibilities to tune its parameters and it is also very fast – even more so
when GPU-based histograms are used –, while performing well on the dataset. Random
Forest is a model which usually performs better than a single Decision Tree while keeping
its run time optimal for real life scenarios.

The fine-tuning of the models could be better because the used grid search with cross-
validation is sometimes not good enough for my use-case. It is a very resource intensive
task as it is an exhaustive search. A questionable substitution would be to use randomized
search, which picks random parameters from a range in a predetermined number of itera-

77

tions. Another alternative would be to use genetic algorithm which tunes the parameters
in a way that resembles biological evolution, which could be explored in a future work.

Based on my results, the used anomaly-based IDSs have great potential. The main draw-
back of IDSs based on machine learning is that they produce a relatively large amount
of false positive alarms which would be overwhelming for the human factor in this proce-
dure. These false positive cases can be mitigated with combining anomaly-based solutions
hierarchically. Naturally, the time complexity will be multiplied for benign samples as the
remaining attacks are dropped in each stage of the classification and the benign samples
go through the whole process. A simplistic architecture for this use-case is presented in
Figure 7.1.

Figure 7.1: An example architecture for a hierarchical IDS

If the goal is to make the predictions as certain as possible, then another option would
be to use the previously mentioned hybrid IDS technique (see Figure 7.2). It combines
the anomaly-based approach with the signature-based one. The input goes through the
signature-based IDS which is, e.g. a database of rules, and if the traffic does match one
rule, then it will be dropped as it is an attack based on the predefined rules. After this
the remaining data will continue its way through an anomaly-based solution, where the
classification happens. From the attacks detected by the anomaly-based approach, it can
make new signatures for the database. One of the problems with this method is keeping
this database up-to-date but this is possible as the signature-based approaches are most
commonly used today. In a future work both of these architectures would be interesting
to experiment with.

Figure 7.2: An example architecture for a hybrid IDS

78

Acknowledgements

I would like to thank my advisor, Dr. András Gergely Mészáros, who was always available
to help me through the writing of this thesis and also during the work in previous semesters.
Our frequent consultations were very progressive and helpful. His willingness to answer my
questions even in his free time is greatly appreciated. I am grateful for his good insights
and corrections, which helped to improve the overall quality of this work and influenced
me to write a demanding paper on this topic.

I would like to thank my girlfriend, Noémi Ujlaki, for all her love and support and for her
grammatical corrections in this thesis.

79

List of Figures

2.1 The visulization of the proposed methodology 4

2.2 The dropdown can be used to select the tag – by its name – and the button
on its left side selects and runs those cells, which have the tag 5

3.1 The testbed architecture for CICIDS2017 dataset [59] 9

3.2 The 2 dimensional plot of the CICIDS2017 dataset 10

3.3 The 2 dimensional plot of the RP dataset 18

4.1 Features variance (on logarithmic scale) . 21

4.2 Occurrences before and after sampling the training data 23

4.3 F-test iterations . 25

4.4 Results of preprocessing stages . 26

4.5 Times passed during fitting and validation 26

5.1 Example of an ideal binary confusion matrix 29

5.2 Example of a multiclass confusion matrix, which represents an almost per-
fect outcome . 30

5.3 An AP curve with the score of 0.67 . 32

5.4 A plotted ROC curve with ROC AUC being 0.9 33

5.5 The process of fine-tuning . 35

5.6 Example for the data splitting of 5-fold cross-validation 35

5.7 The structure of a Decision Tree . 37

5.8 A Decision Tree parametrized with max_depth=2, min_samples_leaf=100
and min_samples_split=300 . 38

5.9 The result of grid search broken down to the chosen parameters 40

5.10 The mean test F1 macro scores of every iteration 40

5.11 The result of GridSearchCV . 41

5.12 The confusion matrix of validation and test phases 42

5.13 The ROC AUC OVR macro and average precision macro scores by cate-
gories on the test data . 42

5.14 Example of bootstrapping . 43

80

5.15 The process of bagging . 44

5.16 The result of grid search broken down to the chosen parameters 46

5.17 The occurrence of depths within trees constructed by
RandomForestClassifier . 47

5.18 The mean test F1 macro scores of every iteration 47

5.19 The result of GridSearchCV . 48

5.20 The confusion matrix of validation and test phases 48

5.21 The ROC AUC OVR macro and average preciosion macro scores by cate-
gories on the test data . 49

5.22 The process of boosting . 50

5.23 The result of grid search broken down to the chosen parameters 52

5.24 The mean test F1 macro scores of every iteration 53

5.25 The exploration of max_depth within the base estimator of
AdaBoostClassifier . 54

5.26 The result of grid search broken down to the chosen parameters. 54

5.27 The mean test F1 macro scores of every iteration 55

5.28 The result of GridSearchCV . 55

5.29 The result of grid search broken down to the chosen parameters 56

5.30 The mean test F1 macro scores of every iteration 56

5.31 The confusion matrix of validation and test phases 57

5.32 The ROC AUC OVR macro and average precision macro scores by cate-
gories on the test data . 57

5.33 The result of grid search broken down to the chosen parameters 62

5.34 The mean test F1 macro scores of every iteration 62

5.35 The result of GridSearchCV . 63

5.36 Results represented with confusion matrices 64

5.37 The ROC AUC OVR macro and average precision macro scores by cate-
gories on the test data . 65

5.38 The train and test times of the models . 66

5.39 The scores achieved on test dataset for each model 67

5.40 The grouping of false negative samples by the times that they could be
detected . 67

5.41 The comparison between the proposed models of Bhattacharya et al. and
my models . 68

5.42 The comparison between Panwar et al. models and my models broken down
by categories . 69

5.43 Comparison between the models proposed by Roopak et al. and my models
based on DDoS classification . 70

81

6.1 Occurrences before and after sampling . 72

6.2 F-test iterations . 73

6.3 Results of preprocessing stages . 73

6.4 Times passed during fitting and validation 74

6.5 The train and test times of the models . 75

6.6 The scores achieved on test dataset for each model 75

6.7 The grouping of false negative samples by the times that they could be
detected . 76

7.1 An example architecture for a hierarchical IDS 78

7.2 An example architecture for a hybrid IDS 78

82

List of Tables

3.1 The attack types in NSL-KDD train and test datasets 8

3.2 Brute force attacks . 11

3.3 DoS and DDoS attacks . 11

3.4 Web-based attacks . 13

3.5 Botnet attack schedule . 15

3.6 The list of the used Nmap switches . 15

3.7 The schedule of port scans . 15

3.8 The schedule of Heartbleed attacks . 16

3.9 The schedule of Infiltration attacks . 16

4.1 The files used for my work . 19

4.2 The categories of the samples . 20

4.3 The new groups . 20

4.4 The training set after splitting . 22

5.1 The used computer resources . 27

5.2 The used parameter ranges . 39

5.3 The used parameter ranges . 46

5.4 The used parameter ranges. 52

5.5 The used parameter value ranges . 61

6.1 The categories of the samples in the corrected dataset 71

6.2 The used parameters for the classifiers – over their base parameter set –
detailed in Chapter 5 compared to the novel parameters 74

83

Bibliography

[1] About pandas. https://pandas.pydata.org/about/index.html. Accessed: 2022-
12-03.

[2] Ossama B. Al-Khurafi and Mohammad A. Al-Ahmad. Survey of Web Application
Vulnerability Attacks. In 2015 4th International Conference on Advanced Computer
Science Applications and Technologies (ACSAT), pages 154–158. IEEE, 2015.

[3] An introduction to seaborn. https://seaborn.pydata.org/tutorial/
introduction. Accessed: 2022-12-03.

[4] Răzvan Andonie. Hyperparameter optimization in learning systems. Journal of Mem-
brane Computing, 1(4):279–291, 2019.

[5] Rebecca Gurley Bace, Peter Mell, et al. Intrusion detection systems. 2001.

[6] Daniel Berrar. Cross-validation., 2019.

[7] Sweta Bhattacharya, Praveen Kumar Reddy Maddikunta, Rajesh Kaluri, Saurabh
Singh, Thippa Reddy Gadekallu, Mamoun Alazab, and Usman Tariq. A Novel PCA-
Firefly Based XGBoost Classification Model for Intrusion Detection in Networks Us-
ing GPU. Electronics, 9(2):219, 2020.

[8] Alex Biryukov, Daniel Dinu, and Dmitry Khovratovich. Argon2: New Generation of
Memory-Hard Functions for Password Hashing and Other Applications. In 2016 IEEE
European Symposium on Security and Privacy (EuroS&P), pages 292–302. IEEE,
2016.

[9] Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

[10] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[11] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer.
SMOTE: Synthetic Minority Over-sampling Technique. Journal of artificial intelli-
gence research, 16:321–357, 2002.

[12] Tianqi Chen and Carlos Guestrin. XGBoost: A Scalable Tree Boosting System.
In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 785–794, 2016.

[13] Thomas G Dietterich et al. Ensemble learning. The Handbook of Brain Theory and
Neural Networks, 2(1):110–125, 2002.

[14] DVWA GitHub repository. https://github.com/digininja/DVWA. Accessed: 2022-
12-07.

84

https://pandas.pydata.org/about/index.html
https://seaborn.pydata.org/tutorial/introduction
https://seaborn.pydata.org/tutorial/introduction
https://github.com/digininja/DVWA

[15] Gints Engelen, Vera Rimmer, and Wouter Joosen. Troubleshooting an Intrusion
Detection Dataset: the CICIDS2017 Case Study. In 2021 IEEE Security and Privacy
Workshops (SPW), pages 7–12. IEEE, 2021.

[16] Maryam Feily, Alireza Shahrestani, and Sureswaran Ramadass. A Survey of Botnet
and Botnet Detection. In 2009 Third International Conference on Emerging Security
Information, Systems and Technologies, pages 268–273. IEEE, 2009.

[17] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Additive logistic regression:
a statistical view of boosting (with discussion and a rejoinder by the authors). The
Annals of Statistics, 28(2):337–407, 2000.

[18] Amirhossein Gharib, Iman Sharafaldin, Arash Habibi Lashkari, and Ali A. Ghorbani.
An Evaluation Framework for Intrusion Detection Dataset. In 2016 International
Conference on Information Science and Security (ICISS), pages 1–6. IEEE, 2016.

[19] Margherita Grandini, Enrico Bagli, and Giorgio Visani. Metrics for Multi-Class Clas-
sification: an Overview. arXiv preprint arXiv:2008.05756, 2020.

[20] Oday A. Hassen and H. Ibrahim. Preventive Approach against HULK Attacks in
Network Environment. International Journal of Computing and Business Research,
7(3), 2017.

[21] Trevor Hastie, Saharon Rosset, Ji Zhu, and Hui Zou. Multi-class AdaBoost. Statistics
and Its Interface, 2(3):349–360, 2009.

[22] Heartbleed Official Website. https://heartbleed.com/. Accessed: 2022-12-03.

[23] HULK GitHub repository. https://github.com/grafov/hulk. Accessed: 2022-12-
03.

[24] imbalanced-learn – Documentation. https://imbalanced-learn.org/stable/
index.html. Accessed: 2022-12-03.

[25] Intrusion Detection Evaluation Dataset (CIC-IDS2017). https://www.unb.ca/cic/
datasets/ids-2017.html. Accessed: 2022-12-03.

[26] Jupyter Lab – Overview. https://jupyterlab.readthedocs.io/en/stable/
getting_started/overview.html. Accessed: 2022-12-03.

[27] KDD99 site. http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html. Ac-
cessed: 2022-12-07.

[28] Manju Khari, Parikshit Sangwan, et al. Web-application attacks: A survey. In
2016 3rd International Conference on Computing for Sustainable Global Development
(INDIACom), pages 2187–2191. IEEE, 2016.

[29] Maxime Lanvin, Pierre-François Gimenez, Yufei Han, Frédéric Majorczyk, Ludovic
Mé, and Eric Totel. Errors in the CICIDS2017 dataset and the significant differences
in detection performances it makes. In CRiSIS 2022-International Conference on
Risks and Security of Internet and Systems, 2022.

[30] Wenjuan Lian, Guoqing Nie, Bin Jia, Dandan Shi, Qi Fan, and Yongquan Liang. An
Intrusion Detection Method Based on Decision Tree-Recursive Feature Elimination
in Ensemble Learning. Mathematical Problems in Engineering, 2020, 2020.

85

https://heartbleed.com/
https://github.com/grafov/hulk
https://imbalanced-learn.org/stable/index.html
https://imbalanced-learn.org/stable/index.html
https://www.unb.ca/cic/datasets/ids-2017.html
https://www.unb.ca/cic/datasets/ids-2017.html
https://jupyterlab.readthedocs.io/en/stable/getting_started/overview.html
https://jupyterlab.readthedocs.io/en/stable/getting_started/overview.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

[31] Matplotlib – Mission Statement. https://matplotlib.org/stable/users/
project/mission.html. Accessed: 2022-12-03.

[32] Leland McInnes, John Healy, and James Melville. UMAP: Uniform Manifold Approx-
imation and Projection for Dimension Reduction. arXiv preprint arXiv:1802.03426,
2018.

[33] Bharti Nagpal, Pratima Sharma, Naresh Chauhan, and Angel Panesar. DDoS tools:
Classification, analysis and comparison. In 2015 2nd International Conference on
Computing for Sustainable Global Development (INDIACom), pages 342–346. IEEE,
2015.

[34] NSL-KDD dataset. https://www.unb.ca/cic/datasets/nsl.html. Accessed: 2022-
12-07.

[35] Numpy – What is Numpy? https://numpy.org/doc/stable/user/whatisnumpy.
html. Accessed: 2022-12-03.

[36] Shailesh Singh Panwar, Pritam Singh Negi, Lokesh Singh Panwar, and Y. Raiwani.
Implementation of Machine Learning Algorithms on CICIDS-2017 Dataset for In-
trusion Detection Using WEKA. International Journal of Recent Technology and
Engineering Regular Issue, 8(3):2195–2207, 2019.

[37] Patator GitHub repository. https://github.com/lanjelot/patator. Accessed:
2022-12-03.

[38] Nerijus Paulauskas and Juozas Auskalnis. Analysis of data pre-processing influence on
intrusion detection using NSL-KDD dataset. In 2017 Open Conference of Electrical,
Electronic and Information Sciences (eStream), pages 1–5. IEEE, 2017.

[39] Plotly Express – Arguments in Python. https://plotly.com/python/
px-arguments/. Accessed: 2022-12-03.

[40] K. Munivara Prasad, A. Rama Mohan Reddy, and K. Venugopal Rao. DoS and DDoS
Attacks: Defense, Detection and Traceback Mechanisms - A Survey. Global Journal
of Computer Science and Technology, 2014.

[41] Ajjarapu Kusuma Priyanka and Siddemsetty Sai Smruthi. WebApplication Vulner-
abilities: Exploitation and Prevention. In 2020 Second International Conference on
Inventive Research in Computing Applications (ICIRCA), pages 729–734. IEEE, 2020.

[42] Joseph Prusa, Taghi M. Khoshgoftaar, David J. Dittman, and Amri Napolitano. Us-
ing Random Undersampling to Alleviate Class Imbalance on Tweet Sentiment Data.
In 2015 IEEE International Conference on Information Reuse and Integration, pages
197–202. IEEE, 2015.

[43] Monika Roopak, Gui Yun Tian, and Jonathon Chambers. Deep Learning Models for
Cyber Security in IoT Networks. In 2019 IEEE 9th Annual Computing and Commu-
nication Workshop and Conference (CCWC), pages 0452–0457. IEEE, 2019.

[44] Arnaud Rosay, Eloïse Cheval, Florent Carlier, and Pascal Leroux. Network intrusion
detection: A comprehensive analysis of cic-ids2017. In 8th International Conference
on Information Systems Security and Privacy, pages 25–36. SCITEPRESS-Science
and Technology Publications, 2022.

86

https://matplotlib.org/stable/users/project/mission.html
https://matplotlib.org/stable/users/project/mission.html
https://www.unb.ca/cic/datasets/nsl.html
https://numpy.org/doc/stable/user/whatisnumpy.html
https://numpy.org/doc/stable/user/whatisnumpy.html
https://github.com/lanjelot/patator
https://plotly.com/python/px-arguments/
https://plotly.com/python/px-arguments/

[45] scikit-learn – AdaBoostClassifier. https://scikit-learn.org/stable/modules/
generated/sklearn.ensemble.AdaBoostClassifier.html. Accessed: 2022-12-06.

[46] scikit-learn – Average Precision Score. https://scikit-learn.org/stable/
modules/generated/sklearn.metrics.average_precision_score.html. Ac-
cessed: 2022-12-03.

[47] scikit-learn – Confusion Matrix. https://scikit-learn.org/stable/modules/
generated/sklearn.metrics.confusion_matrix.html. Accessed: 2022-12-04.

[48] scikit-learn – Decision Trees. https://scikit-learn.org/stable/modules/tree.
html#tree-algorithms-id3-c4-5-c5-0-and-cart. Accessed: 2022-12-05.

[49] scikit-learn – DecisionTreeClassifier. https://scikit-learn.org/stable/modules/
generated/sklearn.tree.DecisionTreeClassifier.html. Accessed: 2022-12-06.

[50] scikit-learn – Discrete versus Real AdaBoost. scikit-learn – discrete versus
real adaboost. https://scikit-learn.org/1.1/auto_examples/ensemble/plot_
adaboost_hastie_10_2.html. Accessed: 2022-12-05.

[51] scikit-learn – F1 score. https://scikit-learn.org/stable/modules/generated/
sklearn.metrics.f1_score.html. Accessed: 2022-12-04.

[52] scikit-learn – Forests of randomized trees. scikit-learn – forests of randomized trees.
https://scikit-learn.org/stable/modules/ensemble.html#forest. Accessed:
2022-12-05.

[53] scikit-learn – GridSearchCV. https://scikit-learn.org/stable/modules/
generated/sklearn.model_selection.GridSearchCV.html. Accessed: 2022-12-07.

[54] scikit-learn – Model Evaluation. https://scikit-learn.org/stable/modules/
model_evaluation.html. Accessed: 2022-12-04.

[55] scikit-learn – RandomForestClassifier. https://scikit-learn.org/stable/
modules/generated/sklearn.ensemble.RandomForestClassifier.html. Ac-
cessed: 2022-12-06.

[56] scikit-learn – StratifiedKFold. https://scikit-learn.org/stable/modules/
generated/sklearn.model_selection.StratifiedKFold.html. Accessed: 2022-
12-05.

[57] scikit-learn - Getting Started. https://scikit-learn.org/stable/getting_
started.html. Accessed: 2022-12-03.

[58] Iman Sharafaldin, Amirhossein Gharib, Arash Habibi Lashkari, and Ali A. Ghorbani.
Towards a Reliable Intrusion Detection Benchmark Dataset. Software Networking,
2018(1):177–200, 2018.

[59] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A. Ghorbani. Toward Generating
a New Intrusion Detection Dataset and Intrusion Traffic Characterization. ICISSP,
1:108–116, 2018.

[60] Tanishka Shorey, Deepthi Subbaiah, Ashwin Goyal, Anuraag Sakxena, and
Alekha Kumar Mishra. Performance Comparison and Analysis of Slowloris, Golden-
Eye and Xerxes DDoS Attack Tools. In 2018 International Conference on Advances
in Computing, Communications and Informatics (ICACCI), pages 318–322. IEEE,
2018.

87

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_matrix.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_matrix.html
https://scikit-learn.org/stable/modules/tree.html#tree-algorithms-id3-c4-5-c5-0-and-cart
https://scikit-learn.org/stable/modules/tree.html#tree-algorithms-id3-c4-5-c5-0-and-cart
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/1.1/auto_examples/ensemble/plot_adaboost_hastie_10_2.html
https://scikit-learn.org/1.1/auto_examples/ensemble/plot_adaboost_hastie_10_2.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
https://scikit-learn.org/stable/modules/ensemble.html#forest
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/model_evaluation.html
https://scikit-learn.org/stable/modules/model_evaluation.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html
https://scikit-learn.org/stable/getting_started.html
https://scikit-learn.org/stable/getting_started.html

[61] slowhttptest GitHub repository. https://github.com/shekyan/slowhttptest. Ac-
cessed: 2022-12-03.

[62] slowloris GitHub repository. https://github.com/gkbrk/slowloris. Accessed:
2022-12-03.

[63] Joshua Starmer. XGBoost playlist. URL https://youtube.com/playlist?list=
PLblh5JKOoLULU0irPgs1SnKO6wqVjKUsQ. Accessed: 2022-12-06.

[64] Lars Sthle, Svante Wold, et al. Analysis of variance (ANOVA). Chemometrics and
Intelligent Laboratory Systems, 6(4):259–272, 1989.

[65] Mahbod Tavallaee, Ebrahim Bagheri, Wei Lu, and Ali A Ghorbani. A detailed anal-
ysis of the KDD CUP 99 data set. In 2009 IEEE Symposium on Computational
Intelligence in Security and Defense Applications, pages 1–6. IEEE, 2009.

[66] Alaa Tharwat. Classification assessment methods. Applied Computing and Informat-
ics, 2020.

[67] Roman Timofeev. Classification and Regression Trees (CART) Theory and Applica-
tions. Humboldt University, Berlin, 54, 2004.

[68] UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction.
https://umap-learn.readthedocs.io/en/latest/index.html. Accessed: 2022-
12-07.

[69] XGBoost – Documentation. https://xgboost.readthedocs.io/en/stable/. Ac-
cessed: 2022-12-03.

[70] XGBoost – parameters. https://xgboost.readthedocs.io/en/stable/
parameter.html. Accessed: 2022-12-06.

88

https://github.com/shekyan/slowhttptest
https://github.com/gkbrk/slowloris
https://youtube.com/playlist?list=PLblh5JKOoLULU0irPgs1SnKO6wqVjKUsQ
https://youtube.com/playlist?list=PLblh5JKOoLULU0irPgs1SnKO6wqVjKUsQ
https://umap-learn.readthedocs.io/en/latest/index.html
https://xgboost.readthedocs.io/en/stable/
https://xgboost.readthedocs.io/en/stable/parameter.html
https://xgboost.readthedocs.io/en/stable/parameter.html

	Description of my task
	Összefoglaló
	Abstract
	Introduction
	Methodology
	Tools and platforms used
	Used packages
	Machine learning packages
	Visualization packages

	Datasets
	KDD99
	NSL-KDD
	CICIDS2017
	Benign
	Brute force
	Patator

	DoS/DDoS
	Slowloris
	slowhttptest
	HULK and GoldenEye
	LOIC

	Web attacks
	Brute force
	XSS
	SQLi

	Ares
	Port scan
	Heartbleed
	Infiltration

	Errors in CICIDS2017

	Preprocessing
	VarianceThreshold
	Splitting
	Sampling
	Random Undersampling
	SMOTE

	Feature elimination
	Preprocessing summary

	Evaluation
	Metrics
	Confusion matrix
	Averaging techniques for multiclass classification
	Macro averaging
	Weighted averaging

	Accuracy
	Average precision
	ROC AUC
	F1 score

	Hyperparameter tuning
	Grid search with cross-validation

	Decision Tree
	Fine-tuning
	Results

	Random Forest
	Fine-tuning
	Results

	AdaBoost
	Fine-tuning
	First approach
	Second approach
	Third approach
	Summary

	Results

	XGBoost
	Fine-tuning
	Results

	Summary
	Comparison

	Corrections in CICIDS2017
	Preprocessing
	Fine-tuning summary
	Evaluation summary

	Final thoughts
	Acknowledgements
	List of Figures
	List of Tables
	Bibliography

