
Performance Analysis of Sparse Matrix Representation in
Hierarchical Temporal Memory for Sequence Modeling

1 Balatonfüred Student Research Group
1,2Department of Telecommunications and Media Informatics, Budapest

University of Technology and Economics Budapest, Hungary
3Numenta is a nonprofit research group dedicated to developing the

Hierarchical Temporal Memory.
E-mail: csongor.pilinszkinagy@gmail.com; toth.b@tmit.bme.hu

INFOCOMMUNICATIONS JOURNAL

AUGUST 2020 • VOLUME XII • NUMBER 2 41

Performance Analysis of Sparse Matrix
Representation in Hierarchical Temporal Memory

for Sequence Modeling
Csongor Pilinszki-Nagy1 and Bálint Gyires-Tóth2

Performance Analysis of Sparse Matrix
Representation in Hierarchical Temporal Memory

for Sequence Modeling
Csongor Pilinszki-Nagy, Bálint Gyires-Tóth

Department of Telecommunications and Media Informatics
Budapest University of Technology and Economics

Budapest, Hungary
Email: csongor.pilinszkinagy@gmail.com, toth.b@tmit.bme.hu

Abstract—Hierarchical Temporal Memory (HTM) is a special
type of artificial neural network (ANN), that differs from the
widely used approaches. It is suited to efficiently model sequential
data (including time series). The network implements a variable
order sequence memory, it is trained by Hebbian learning and all
of the network’s activations are binary and sparse. The network
consists of four separable units. First, the encoder layer translates
the numerical input into sparse binary vectors. The Spatial Pooler
performs normalization and models the spatial features of the
encoded input. The Temporal Memory is responsible for learning
the Spatial Pooler’s normalized output sequence. Finally, the
decoder takes the Temporal Memory’s outputs and translates
it to the target. The connections in the network are also sparse,
which requires prudent design and implementation. In this paper
a sparse matrix implementation is elaborated, it is compared to
the dense implementation. Furthermore, the HTM’s performance
is evaluated in terms of accuracy, speed and memory complexity
and compared to the deep neural network-based LSTM (Long
Short-Term Memory).

Index Terms—neural network, Hierarchical Temporal Mem-
ory, time series analysis, artificial intelligence, explainable AI,
performance optimization

I. INTRODUCTION

Nowadays, data-driven artificial intelligence is the source of
better and more flexible solutions for complex tasks compared
to expert systems. Deep learning is one of the most focused
research area, which utilizes artificial neural networks. The
complexity and capability of these networks are increasing
rapidly. However, these networks are still ’just’ black (or at
the best grey) box approximators for nonlinear processes.

Artificial neural networks are loosely inspired by neurons
and there are fundamental differences [1], that should be
implemented to achieve Artificial General Intelligence (AGI),
according to Numenta [2], [3]. 1 They are certain that AGI can
only be achieved by mimicking the neocortex and implement-
ing those fundamental differences in a new neural network
model.

Artificial neural networks require massive amount of com-
putational performance to train the models through many
epochs. Also, the result of a neural network training is not,

1Numenta is a nonprofit research group dedicated to developing the
Hierarchical Temporal Memory.

or only partly understandable, it remains a black (or at best a
grey) box system. There is a need to produce explainable AI
solutions, that can be understood. Understanding and modeling
the human brain should deliver a better understanding of the
decisions of the neural networks.

Sequence learning is a domain of machine learning that aims
to learn sequential and temporal data, and time series. Through
the years there were several approaches to solve sequence
learning. The state of the art deep learning solutions use
one-dimensional convolutional neural networks [4], recurrent
neural networks with LSTM type cells [5], [6] and dense
layers with attention [7]. Despite the improvements over other
solutions these algorithms still lack some of the preferable
properties, that would make them ideal for sequence learning
[1]. The HTM network utilizes a different approach.

Since the HTM network is sparse by nature, it is desirable
to implement it in such a way that exploits the sparse structure.
Since other neural networks work using optimized matrix
implementations, a sparse matrix version is a viable solution
to that. This porting should be a two-step process: first a
matrix implementation of the HTM network, then a transition
to sparse variables inside the network. These ideas are partially
present in other experiments, still, this approach remains a
unique way of executing HTM training steps. Our goal is to
realize and evaluate an end-to-end sparse solution of the HTM
network, which utilizes optimized (in terms of memory and
speed) sparse matrix operations.

The contributions of this paper are the following:
• Collection of present HTM solutions and their specifics
• Proposed matrix solution for the HTM network
• Proposed sparse matrix solution for the HTM network
• Evaluation of training times for every part of the HTM

network
• Evaluation of training times compared to LSTM network
• Evaluation of training and testing accuracy compared to

LSTM network

II. BACKGROUND

There have been a number of works on different sequence
learning methods (e.g., Hidden Markov Models [8], Autore-

Performance Analysis of Sparse Matrix
Representation in Hierarchical Temporal Memory

for Sequence Modeling
Csongor Pilinszki-Nagy, Bálint Gyires-Tóth

Department of Telecommunications and Media Informatics
Budapest University of Technology and Economics

Budapest, Hungary
Email: csongor.pilinszkinagy@gmail.com, toth.b@tmit.bme.hu

Abstract—Hierarchical Temporal Memory (HTM) is a special
type of artificial neural network (ANN), that differs from the
widely used approaches. It is suited to efficiently model sequential
data (including time series). The network implements a variable
order sequence memory, it is trained by Hebbian learning and all
of the network’s activations are binary and sparse. The network
consists of four separable units. First, the encoder layer translates
the numerical input into sparse binary vectors. The Spatial Pooler
performs normalization and models the spatial features of the
encoded input. The Temporal Memory is responsible for learning
the Spatial Pooler’s normalized output sequence. Finally, the
decoder takes the Temporal Memory’s outputs and translates
it to the target. The connections in the network are also sparse,
which requires prudent design and implementation. In this paper
a sparse matrix implementation is elaborated, it is compared to
the dense implementation. Furthermore, the HTM’s performance
is evaluated in terms of accuracy, speed and memory complexity
and compared to the deep neural network-based LSTM (Long
Short-Term Memory).

Index Terms—neural network, Hierarchical Temporal Mem-
ory, time series analysis, artificial intelligence, explainable AI,
performance optimization

I. INTRODUCTION

Nowadays, data-driven artificial intelligence is the source of
better and more flexible solutions for complex tasks compared
to expert systems. Deep learning is one of the most focused
research area, which utilizes artificial neural networks. The
complexity and capability of these networks are increasing
rapidly. However, these networks are still ’just’ black (or at
the best grey) box approximators for nonlinear processes.

Artificial neural networks are loosely inspired by neurons
and there are fundamental differences [1], that should be
implemented to achieve Artificial General Intelligence (AGI),
according to Numenta [2], [3]. 1 They are certain that AGI can
only be achieved by mimicking the neocortex and implement-
ing those fundamental differences in a new neural network
model.

Artificial neural networks require massive amount of com-
putational performance to train the models through many
epochs. Also, the result of a neural network training is not,

1Numenta is a nonprofit research group dedicated to developing the
Hierarchical Temporal Memory.

or only partly understandable, it remains a black (or at best a
grey) box system. There is a need to produce explainable AI
solutions, that can be understood. Understanding and modeling
the human brain should deliver a better understanding of the
decisions of the neural networks.

Sequence learning is a domain of machine learning that aims
to learn sequential and temporal data, and time series. Through
the years there were several approaches to solve sequence
learning. The state of the art deep learning solutions use
one-dimensional convolutional neural networks [4], recurrent
neural networks with LSTM type cells [5], [6] and dense
layers with attention [7]. Despite the improvements over other
solutions these algorithms still lack some of the preferable
properties, that would make them ideal for sequence learning
[1]. The HTM network utilizes a different approach.

Since the HTM network is sparse by nature, it is desirable
to implement it in such a way that exploits the sparse structure.
Since other neural networks work using optimized matrix
implementations, a sparse matrix version is a viable solution
to that. This porting should be a two-step process: first a
matrix implementation of the HTM network, then a transition
to sparse variables inside the network. These ideas are partially
present in other experiments, still, this approach remains a
unique way of executing HTM training steps. Our goal is to
realize and evaluate an end-to-end sparse solution of the HTM
network, which utilizes optimized (in terms of memory and
speed) sparse matrix operations.

The contributions of this paper are the following:
• Collection of present HTM solutions and their specifics
• Proposed matrix solution for the HTM network
• Proposed sparse matrix solution for the HTM network
• Evaluation of training times for every part of the HTM

network
• Evaluation of training times compared to LSTM network
• Evaluation of training and testing accuracy compared to

LSTM network

II. BACKGROUND

There have been a number of works on different sequence
learning methods (e.g., Hidden Markov Models [8], Autore-

Performance Analysis of Sparse Matrix
Representation in Hierarchical Temporal Memory

for Sequence Modeling
Csongor Pilinszki-Nagy, Bálint Gyires-Tóth

Department of Telecommunications and Media Informatics
Budapest University of Technology and Economics

Budapest, Hungary
Email: csongor.pilinszkinagy@gmail.com, toth.b@tmit.bme.hu

Abstract—Hierarchical Temporal Memory (HTM) is a special
type of artificial neural network (ANN), that differs from the
widely used approaches. It is suited to efficiently model sequential
data (including time series). The network implements a variable
order sequence memory, it is trained by Hebbian learning and all
of the network’s activations are binary and sparse. The network
consists of four separable units. First, the encoder layer translates
the numerical input into sparse binary vectors. The Spatial Pooler
performs normalization and models the spatial features of the
encoded input. The Temporal Memory is responsible for learning
the Spatial Pooler’s normalized output sequence. Finally, the
decoder takes the Temporal Memory’s outputs and translates
it to the target. The connections in the network are also sparse,
which requires prudent design and implementation. In this paper
a sparse matrix implementation is elaborated, it is compared to
the dense implementation. Furthermore, the HTM’s performance
is evaluated in terms of accuracy, speed and memory complexity
and compared to the deep neural network-based LSTM (Long
Short-Term Memory).

Index Terms—neural network, Hierarchical Temporal Mem-
ory, time series analysis, artificial intelligence, explainable AI,
performance optimization

I. INTRODUCTION

Nowadays, data-driven artificial intelligence is the source of
better and more flexible solutions for complex tasks compared
to expert systems. Deep learning is one of the most focused
research area, which utilizes artificial neural networks. The
complexity and capability of these networks are increasing
rapidly. However, these networks are still ’just’ black (or at
the best grey) box approximators for nonlinear processes.

Artificial neural networks are loosely inspired by neurons
and there are fundamental differences [1], that should be
implemented to achieve Artificial General Intelligence (AGI),
according to Numenta [2], [3]. 1 They are certain that AGI can
only be achieved by mimicking the neocortex and implement-
ing those fundamental differences in a new neural network
model.

Artificial neural networks require massive amount of com-
putational performance to train the models through many
epochs. Also, the result of a neural network training is not,

1Numenta is a nonprofit research group dedicated to developing the
Hierarchical Temporal Memory.

or only partly understandable, it remains a black (or at best a
grey) box system. There is a need to produce explainable AI
solutions, that can be understood. Understanding and modeling
the human brain should deliver a better understanding of the
decisions of the neural networks.

Sequence learning is a domain of machine learning that aims
to learn sequential and temporal data, and time series. Through
the years there were several approaches to solve sequence
learning. The state of the art deep learning solutions use
one-dimensional convolutional neural networks [4], recurrent
neural networks with LSTM type cells [5], [6] and dense
layers with attention [7]. Despite the improvements over other
solutions these algorithms still lack some of the preferable
properties, that would make them ideal for sequence learning
[1]. The HTM network utilizes a different approach.

Since the HTM network is sparse by nature, it is desirable
to implement it in such a way that exploits the sparse structure.
Since other neural networks work using optimized matrix
implementations, a sparse matrix version is a viable solution
to that. This porting should be a two-step process: first a
matrix implementation of the HTM network, then a transition
to sparse variables inside the network. These ideas are partially
present in other experiments, still, this approach remains a
unique way of executing HTM training steps. Our goal is to
realize and evaluate an end-to-end sparse solution of the HTM
network, which utilizes optimized (in terms of memory and
speed) sparse matrix operations.

The contributions of this paper are the following:
• Collection of present HTM solutions and their specifics
• Proposed matrix solution for the HTM network
• Proposed sparse matrix solution for the HTM network
• Evaluation of training times for every part of the HTM

network
• Evaluation of training times compared to LSTM network
• Evaluation of training and testing accuracy compared to

LSTM network

II. BACKGROUND

There have been a number of works on different sequence
learning methods (e.g., Hidden Markov Models [8], Autore-

Performance Analysis of Sparse Matrix
Representation in Hierarchical Temporal Memory

for Sequence Modeling
Csongor Pilinszki-Nagy, Bálint Gyires-Tóth

Department of Telecommunications and Media Informatics
Budapest University of Technology and Economics

Budapest, Hungary
Email: csongor.pilinszkinagy@gmail.com, toth.b@tmit.bme.hu

Abstract—Hierarchical Temporal Memory (HTM) is a special
type of artificial neural network (ANN), that differs from the
widely used approaches. It is suited to efficiently model sequential
data (including time series). The network implements a variable
order sequence memory, it is trained by Hebbian learning and all
of the network’s activations are binary and sparse. The network
consists of four separable units. First, the encoder layer translates
the numerical input into sparse binary vectors. The Spatial Pooler
performs normalization and models the spatial features of the
encoded input. The Temporal Memory is responsible for learning
the Spatial Pooler’s normalized output sequence. Finally, the
decoder takes the Temporal Memory’s outputs and translates
it to the target. The connections in the network are also sparse,
which requires prudent design and implementation. In this paper
a sparse matrix implementation is elaborated, it is compared to
the dense implementation. Furthermore, the HTM’s performance
is evaluated in terms of accuracy, speed and memory complexity
and compared to the deep neural network-based LSTM (Long
Short-Term Memory).

Index Terms—neural network, Hierarchical Temporal Mem-
ory, time series analysis, artificial intelligence, explainable AI,
performance optimization

I. INTRODUCTION

Nowadays, data-driven artificial intelligence is the source of
better and more flexible solutions for complex tasks compared
to expert systems. Deep learning is one of the most focused
research area, which utilizes artificial neural networks. The
complexity and capability of these networks are increasing
rapidly. However, these networks are still ’just’ black (or at
the best grey) box approximators for nonlinear processes.

Artificial neural networks are loosely inspired by neurons
and there are fundamental differences [1], that should be
implemented to achieve Artificial General Intelligence (AGI),
according to Numenta [2], [3]. 1 They are certain that AGI can
only be achieved by mimicking the neocortex and implement-
ing those fundamental differences in a new neural network
model.

Artificial neural networks require massive amount of com-
putational performance to train the models through many
epochs. Also, the result of a neural network training is not,

1Numenta is a nonprofit research group dedicated to developing the
Hierarchical Temporal Memory.

or only partly understandable, it remains a black (or at best a
grey) box system. There is a need to produce explainable AI
solutions, that can be understood. Understanding and modeling
the human brain should deliver a better understanding of the
decisions of the neural networks.

Sequence learning is a domain of machine learning that aims
to learn sequential and temporal data, and time series. Through
the years there were several approaches to solve sequence
learning. The state of the art deep learning solutions use
one-dimensional convolutional neural networks [4], recurrent
neural networks with LSTM type cells [5], [6] and dense
layers with attention [7]. Despite the improvements over other
solutions these algorithms still lack some of the preferable
properties, that would make them ideal for sequence learning
[1]. The HTM network utilizes a different approach.

Since the HTM network is sparse by nature, it is desirable
to implement it in such a way that exploits the sparse structure.
Since other neural networks work using optimized matrix
implementations, a sparse matrix version is a viable solution
to that. This porting should be a two-step process: first a
matrix implementation of the HTM network, then a transition
to sparse variables inside the network. These ideas are partially
present in other experiments, still, this approach remains a
unique way of executing HTM training steps. Our goal is to
realize and evaluate an end-to-end sparse solution of the HTM
network, which utilizes optimized (in terms of memory and
speed) sparse matrix operations.

The contributions of this paper are the following:
• Collection of present HTM solutions and their specifics
• Proposed matrix solution for the HTM network
• Proposed sparse matrix solution for the HTM network
• Evaluation of training times for every part of the HTM

network
• Evaluation of training times compared to LSTM network
• Evaluation of training and testing accuracy compared to

LSTM network

II. BACKGROUND

There have been a number of works on different sequence
learning methods (e.g., Hidden Markov Models [8], Autore-

 Artificial neural networks are loosely inspired by neurons
and there are fundamental differences [1], that should be
implemented to achieve Artificial General Intelligence (AGI),
according to Numenta [2], [3]. 3 They are certain that AGI can
only be achieved by mimicking the neocortex and implement-
ing those fundamental differences in a new neural network
model.
 Artificial neural networks require massive amount of
computational performance to train the models through many

DOI: 10.36244/ICJ.2020.2.6

http://doi.org/10.36244/ICJ.2020.2.6
http://doi.org/10.36244/ICJ.2019.3.2
http://doi.org/10.36244/ICJ.2020.2.6

Performance Analysis of Sparse Matrix Representation in
Hierarchical Temporal Memory for Sequence Modeling

AUGUST 2020 • VOLUME XII • NUMBER 242

INFOCOMMUNICATIONS JOURNAL

gressive Integrated Moving Average (ARIMA) [9]), however,
in this paper artificial neural network-based solutions are
investigated.

A. Deep learning-based sequence modeling

Artificial neural networks evolved in the last decades and
were popularized again in the last years, thanks to the advances
in accelerated computing, novel scientific methods and the
vast amount of data. The premise of these models is the
same: build a network using artificial neurons and weights,
that are the nodes in layers and weights connecting them,
correspondingly. Make predictions using the weights of the
network, and backpropagate the error to optimize weight
values based on a loss function. This iterative method can
achieve outstanding results [10], [11].

Convolutional neural networks (CNN) utilize the spatial
features of the input. This has great use for sequences, since it
is able to find temporal relations between timesteps. This type
of network works efficiently by using small kernels to execute
convolutions on sequence values. The kernels combined with
pooling and regularization layers proved to be a powerful way
to extract information layer by layer from sequences [12], [4].

Recurrent neural networks (RNN) use previous hidden states
and outputs besides the actual input for making predictions.
Baseline RNNs are able only to learn shorter sequences. The
Long Short-Term Memory (LSTM) cell can store and retrieve
the so called inner state and thus, it is able to model longer
sequences [13]. Advances in RNNs, including hierarchical
learning and attention mechanism, can deliver near state-
of-the-art results [14], [15], [16]. An example of advanced
solutions using LSTMs is the Hierarchical Attention Network
(HAN) [17]. This type of network contains multiple layers of
LSTM cells, which model the data on different scopes, and
attention layers, which highlight the important parts of the
representations.

Attention mechanism-based Transformer models achieved
state-of-the-art results in many application scenarios [7]. How-
ever, to outperform CNNs and RNNs, a massive amount of
data and tremendous computational performance are required.

B. Hierarchical Temporal Memory

Hierarchical Temporal Memory (HTM) is a unique approach
to artificial intelligence that is inspired from the neuroscience
of the neocortex [1]. The neocortex is responsible for human
intelligent behavior. The structure of the neocortex is homoge-
neous and has a hierarchical structure where lower parts pro-
cess the stimuli, and higher parts learn more general features.
The neocortex consists of neurons, segments, and synapses.
There are vertical connections that are the feedforward and
feedback information between layers of cells and there are
horizontal connections that are the context inputs. The neurons
can connect to other nearby neurons through segments and
synapses.

HTM is based on the core assumption that the neocortex
stores and recalls sequences. These sequences are patterns of
the Sparse Distributed Representation (SDR) input, which are

translated into the sequences of cell activations in the network.
This is an online training method, which doesn’t need multiple
epochs of training. Most of the necessary synapse connections
are created during the first pass, so it can be viewed as a one-
shot learning capability. The HTM network can recognize and
predict sequences with such robustness, that it does not suffer
from the usual problems hindering the training of conventional
neural networks. HTM builds a predictive model of the world,
so every time it receives input, it is attempting to predict
what is going to happen next. The HTM network can not
only predict the future values of sequences but e.g., detect
anomalies in sequences.

Fig. 1. HTM block diagram

The network consists of four components: SDR Encoder,
Spatial Pooler, Temporal Memory, and SDR decoder (see
Figure 1).

The four components do the following:

• The SDR Scalar Encoder receives the current input value
and represent it an SDR. An SDR representation is
a binary bit arrays that retains the semantic similarity
between similar input values by overlapping bits.

• The Spatial Pooler activates the columns given the SDR
representation of the input. The Spatial Pooler acts as a
normalization layer for the SDR input, which makes sure
the number of columns and the number of active columns
stay fixed. It also acts as a convolutional layer by only
connecting to specific parts of the input.

• The Temporal Memory receives input from the Spatial
Pooler and does the sequence learning, which is expressed
in a set of active cells. Both the active columns and active
cells are sparse representations of data just as the SDRs.
These active cells not only represent the input data but
provide a distinct representation about the context that
came before the input.

• The Scalar Decoder takes the state of the Temporal
Memory and treating it as an SDR decodes it back to
scalar values.

1) Sparse Distributed Representation: The capacity of a
dense bit array is 2 to the power of the number of bits. It is
a large capacity coupled with low noise resistance.

Fig. 2. SDR matching

A spare representation bit array has smaller capacity but
is more robust against noise. In this case the network has a
2% sparsity, which means, that only the 2% of columns are
activated [1]. A sparse bit array can be stored efficiently by
only storing the indices of the ones.

To enable classification and regression there needs to be a
way to decide whether or not two SDRs are matching. An
illustration for SDR matching can be found in Figure 2. If
the overlapping bits in two SDRs are over the threshold, then
it is considered as a match. The accidental overlaps in SDRs
are rare so the matching of two SDRs can be done with high
precision. The rate of a false positive SDR matching is meager.

2) Encoder and decoder: The HTM network works exclu-
sively with SDR inputs. There needs to be an encoder for
it so that it can be applied to real-world problems. The first
and most critical encoder for the HTM system is the scalar
encoder. Such an encoder for the HTM is visualized by the
Figure 3

Fig. 3. SDR encoder visualization

The principles of SDR encoding:
• Semantically similar data should result in SDRs with

overlapping bits. The higher the overlap, the more the
similarity.

• The same input should always produce the same output,
so it needs to be deterministic.

• The output should have the same dimensions for all
inputs.

• The output should have similar sparsity for all inputs and
should handle noise and subsampling.

The prediction is the task of the decoder, which takes an
SDR input and outputs scalar values. This time the SDR input
is the state of the network’s cells in the Temporal Memory.
This part of the network is not well documented, the only
source is the implementation of the NuPIC package [18]. The
SDR decoder visualization is presented in Figure 4.

Fig. 4. SDR decoder visualization

3) Spatial Pooler: The Spatial Pooler is the first layer of the
HTM network. It takes the SDR input from the encoder and
outputs a set of active columns. These columns represent the
recognition of the input and they compete for activation. There
are two tasks for the Spatial Pooler, maintain a fixed sparsity
and maintain overlap properties of the output of the encoder.
These properties can be looked at like the normalization in
other neural networks which helps the training process by
constraining the behavior of the neurons.

The Spatial Pooler is shown in Figure 5

Fig. 5. Spatial Pooler visualization

The Spatial Pooler has connections between the SDR input
cells and the Spatial Pooler columns. Every synapse is a
potential synapse that can be connected or not depending on
its strength. At initialization, there are only some cells con-
nected to one column with a potential synapse. The randomly
initialized Spatial Pooler already satisfies the two criteria, but
a learning Spatial Pooler can do an even better representation
of the input SDRs.

The activation is calculated from the number of active
synapses for every column. Only the top 2% is allowed to
be activated, the others are inhibited.

Performance Analysis of Sparse Matrix Representation in
Hierarchical Temporal Memory for Sequence Modeling

INFOCOMMUNICATIONS JOURNAL

AUGUST 2020 • VOLUME XII • NUMBER 2 43

gressive Integrated Moving Average (ARIMA) [9]), however,
in this paper artificial neural network-based solutions are
investigated.

A. Deep learning-based sequence modeling

Artificial neural networks evolved in the last decades and
were popularized again in the last years, thanks to the advances
in accelerated computing, novel scientific methods and the
vast amount of data. The premise of these models is the
same: build a network using artificial neurons and weights,
that are the nodes in layers and weights connecting them,
correspondingly. Make predictions using the weights of the
network, and backpropagate the error to optimize weight
values based on a loss function. This iterative method can
achieve outstanding results [10], [11].

Convolutional neural networks (CNN) utilize the spatial
features of the input. This has great use for sequences, since it
is able to find temporal relations between timesteps. This type
of network works efficiently by using small kernels to execute
convolutions on sequence values. The kernels combined with
pooling and regularization layers proved to be a powerful way
to extract information layer by layer from sequences [12], [4].

Recurrent neural networks (RNN) use previous hidden states
and outputs besides the actual input for making predictions.
Baseline RNNs are able only to learn shorter sequences. The
Long Short-Term Memory (LSTM) cell can store and retrieve
the so called inner state and thus, it is able to model longer
sequences [13]. Advances in RNNs, including hierarchical
learning and attention mechanism, can deliver near state-
of-the-art results [14], [15], [16]. An example of advanced
solutions using LSTMs is the Hierarchical Attention Network
(HAN) [17]. This type of network contains multiple layers of
LSTM cells, which model the data on different scopes, and
attention layers, which highlight the important parts of the
representations.

Attention mechanism-based Transformer models achieved
state-of-the-art results in many application scenarios [7]. How-
ever, to outperform CNNs and RNNs, a massive amount of
data and tremendous computational performance are required.

B. Hierarchical Temporal Memory

Hierarchical Temporal Memory (HTM) is a unique approach
to artificial intelligence that is inspired from the neuroscience
of the neocortex [1]. The neocortex is responsible for human
intelligent behavior. The structure of the neocortex is homoge-
neous and has a hierarchical structure where lower parts pro-
cess the stimuli, and higher parts learn more general features.
The neocortex consists of neurons, segments, and synapses.
There are vertical connections that are the feedforward and
feedback information between layers of cells and there are
horizontal connections that are the context inputs. The neurons
can connect to other nearby neurons through segments and
synapses.

HTM is based on the core assumption that the neocortex
stores and recalls sequences. These sequences are patterns of
the Sparse Distributed Representation (SDR) input, which are

translated into the sequences of cell activations in the network.
This is an online training method, which doesn’t need multiple
epochs of training. Most of the necessary synapse connections
are created during the first pass, so it can be viewed as a one-
shot learning capability. The HTM network can recognize and
predict sequences with such robustness, that it does not suffer
from the usual problems hindering the training of conventional
neural networks. HTM builds a predictive model of the world,
so every time it receives input, it is attempting to predict
what is going to happen next. The HTM network can not
only predict the future values of sequences but e.g., detect
anomalies in sequences.

Fig. 1. HTM block diagram

The network consists of four components: SDR Encoder,
Spatial Pooler, Temporal Memory, and SDR decoder (see
Figure 1).

The four components do the following:

• The SDR Scalar Encoder receives the current input value
and represent it an SDR. An SDR representation is
a binary bit arrays that retains the semantic similarity
between similar input values by overlapping bits.

• The Spatial Pooler activates the columns given the SDR
representation of the input. The Spatial Pooler acts as a
normalization layer for the SDR input, which makes sure
the number of columns and the number of active columns
stay fixed. It also acts as a convolutional layer by only
connecting to specific parts of the input.

• The Temporal Memory receives input from the Spatial
Pooler and does the sequence learning, which is expressed
in a set of active cells. Both the active columns and active
cells are sparse representations of data just as the SDRs.
These active cells not only represent the input data but
provide a distinct representation about the context that
came before the input.

• The Scalar Decoder takes the state of the Temporal
Memory and treating it as an SDR decodes it back to
scalar values.

1) Sparse Distributed Representation: The capacity of a
dense bit array is 2 to the power of the number of bits. It is
a large capacity coupled with low noise resistance.

Fig. 2. SDR matching

A spare representation bit array has smaller capacity but
is more robust against noise. In this case the network has a
2% sparsity, which means, that only the 2% of columns are
activated [1]. A sparse bit array can be stored efficiently by
only storing the indices of the ones.

To enable classification and regression there needs to be a
way to decide whether or not two SDRs are matching. An
illustration for SDR matching can be found in Figure 2. If
the overlapping bits in two SDRs are over the threshold, then
it is considered as a match. The accidental overlaps in SDRs
are rare so the matching of two SDRs can be done with high
precision. The rate of a false positive SDR matching is meager.

2) Encoder and decoder: The HTM network works exclu-
sively with SDR inputs. There needs to be an encoder for
it so that it can be applied to real-world problems. The first
and most critical encoder for the HTM system is the scalar
encoder. Such an encoder for the HTM is visualized by the
Figure 3

Fig. 3. SDR encoder visualization

The principles of SDR encoding:
• Semantically similar data should result in SDRs with

overlapping bits. The higher the overlap, the more the
similarity.

• The same input should always produce the same output,
so it needs to be deterministic.

• The output should have the same dimensions for all
inputs.

• The output should have similar sparsity for all inputs and
should handle noise and subsampling.

The prediction is the task of the decoder, which takes an
SDR input and outputs scalar values. This time the SDR input
is the state of the network’s cells in the Temporal Memory.
This part of the network is not well documented, the only
source is the implementation of the NuPIC package [18]. The
SDR decoder visualization is presented in Figure 4.

Fig. 4. SDR decoder visualization

3) Spatial Pooler: The Spatial Pooler is the first layer of the
HTM network. It takes the SDR input from the encoder and
outputs a set of active columns. These columns represent the
recognition of the input and they compete for activation. There
are two tasks for the Spatial Pooler, maintain a fixed sparsity
and maintain overlap properties of the output of the encoder.
These properties can be looked at like the normalization in
other neural networks which helps the training process by
constraining the behavior of the neurons.

The Spatial Pooler is shown in Figure 5

Fig. 5. Spatial Pooler visualization

The Spatial Pooler has connections between the SDR input
cells and the Spatial Pooler columns. Every synapse is a
potential synapse that can be connected or not depending on
its strength. At initialization, there are only some cells con-
nected to one column with a potential synapse. The randomly
initialized Spatial Pooler already satisfies the two criteria, but
a learning Spatial Pooler can do an even better representation
of the input SDRs.

The activation is calculated from the number of active
synapses for every column. Only the top 2% is allowed to
be activated, the others are inhibited.

Performance Analysis of Sparse Matrix Representation in
Hierarchical Temporal Memory for Sequence Modeling

AUGUST 2020 • VOLUME XII • NUMBER 244

INFOCOMMUNICATIONS JOURNAL

4) Temporal Memory: The Temporal Memory receives the
active columns as input and outputs the active cells which
represent the context of the input in those active columns. At
any given timestep the active columns tell what the network
sees and the active cells tell in what context the network sees
it.

A visualization of the Temporal Memory columns cells and
connections is provided in Figure 6.

Fig. 6. Temporal Memory connections

The cells in the Temporal Memory are binary, active or
inactive. Additionally, the network’s cells can be in a predictive
state based on their connections, which means activation
is anticipated in the next timestep for that cell. The cells
inside every column are also competing for activation. A
cell is activated if it is in an active column and was in a
predictive state in the previous timestep. The other cells can’t
get activated because of the inhibition.

The connections in the Temporal Memory between cells
are created during training, not initialized like in the Spatial
Pooler. When there is an unknown pattern none of the cells
become predictive in a given column. In this case bursting
happens. Bursting expresses the union of all possible context
representation in a column, so expresses that the network does
not know the context. To later recognize this pattern a winner
cell is needed to choose to represent the new pattern the
network encountered. The winner cells are chosen based on
two factors, matching segments and least used cells.

• If there is a cell in the column that has a matching
segment, it was almost activated. Therefore it should be
the representation of this new context.

• If there is no cell in the column with a matching segment,
the cell with the least segments should be the winner.

The training happens similarly to Spatial Pooler training.
The difference is that one cell has many segments connected
to it, and the synapses of these segments do not connect to
the previous layer’s output but other cells in the temporary
memory. The training also creates new segments and synapses
to ensure that the unknown patterns get recognized the next
time the network encounters them.

The synapse reinforcement is made on the segment that led
to the prediction of the cell. The synapses of that segment are
updated. Also if there were not enough active synapses, the
network grows new ones to previous active cells to ensure at
least the desired amount of active synapses.

In the case where the cell is bursting the training is different.
One cell must be chosen as winner cell. This cell will grow a

new segment, which in turn will place the cell in a similar
situation into the desired predictive state. The winner cell
can be the most active cell, that almost got into predictive
state, or the lowest utilized, in other words the cell that has
the fewest segments. Only winner cells are involved in the
training process. Correctly predicted cells are automatically
winner cells as well, so those are always trained. The new
segment will connect to some of the winner cells in the
previous timestep.

5) Segments, synapses and training: In the HTM network
segments and synapses connect the cells. Synapses start as
potential synapses. This means that a synapse is made to a cell,
but not yet strong enough to propagate the activation of the
cell. During training, this strength can change and above the
threshold the potential synapse becomes connected. A synapse
is active if it is connected to an active cell.

The visualization for the segments connection to cells is
provided in Figure 7 and the illustration for the synapses
connecting to segments is in Figure 8.

Fig. 7. Segment visualization

Fig. 8. Synapse visualization

Cells are connected to segments. The segments contain
synapses that connect to other cells. A segment’s activation
is also binary, either active or not. A segment becomes active
if enough of its synapses become active, this can be solved as
a summation across the segments.

In the Spatial Pooler, one cell has one segment connected
to it, so this is just like in a normal neural network. In the
Temporal Memory, one cell has multiple segments connected
to is. If any segment is activated, the cell becomes active
as well. This is like an or operation between the segment
activations. One segment can be viewed as a recognizer for a
similar subset of SDR representations.

Training of the HTM network is different from other neural
networks. In the network, all neurons, segments, and synapses
have binary activations. Since this network is binary, the
typical loss backpropagation method will not work in this case.
The training suited for such a network is Hebbian learning.
It is a rather simple unsupervised training method, where the

training occurs between neighboring layers only. The Hebbian
learning is illustrated in Figure 9.

Fig. 9. Visualization of Hebbian learning

• Only those synapses that are connected to an active cell
through a segment train.

• If one synapse is connected to an active cell, then
it contributed right to the activation of that segment.
Therefore its strength should be incremented.

• If one synapse is connected to an inactive cell, then it
did not contribute right to the activation of that segment.
Therefore its strength should be decreased.

C. HTM software solutions

There are HTM implementations maintained by Numenta,
which give the foundation for other implementations.

First, the NuPIC Core (Numenta Platform for Intelligent
Computing) is the C++ codebase of the official HTM projects.
It contains all HTM algorithms which can be used by other lan-
guage bindings. Any further bindings should be implemented
in this repository. This codebase implements the Network
API, which is the primary interface for creating whole HTM
systems. It will implement all algorithms for NuPIC but is
currently under transition. The implementation is currently a
failing build according to their CircleCI validation [19].

NuPIC is the Python implementation of the HTM algorithm.
It is also a Python binding to the NuPIC Core. This is the
implementation we choose as baseline. In addition to the
other repository’s Network API, this also has a High-level API
called the Online Prediction Framework (OPF). Through this
framework predictions can be made and also it can be also
used for anomaly detection. To optimize the network’s hyper-
parameters swarming can be implemented, which generates
multiple network versions simultaneously. The C++ codebase
can be used instead of the Python implementation if explicitly
specified by the user [18].

There is also an official and community-driven Java version
of the Numenta NuPIC implementation. This repository pro-
vides a similar interface as the Network API from NuPIC and
has comparable performance. The copyright was donated to
the Numenta group by the author [20].

Comportex is also an official implementation of HTM
using Clojure. It is not derived from NuPIC, it is a separate
implementation, originally based on the CLA whitepaper [21],
then also improved.

Comportex is more a library than a framework because of
Clojure. The user controls simulations and can extract useful

network information like the set of active cells. These variables
can be used to generate predictions or anomaly scores.2

There are also unofficial implementations, which are based
on the CLA whitepaper or the Numenta HTM implementa-
tions.

• Bare Bone Hierarchical Temporal Memory (bbHTM)3

• pyHTM4

• HTM.core5

• HackTM6

• HTM CLA7

• CortiCL8

• Adaptive Sequence Memorizer9

• Continuous HTM10

• Etaler11

• HTM.cuda12

• Sanity13

• Tiny-HTM14

III. PROPOSED METHOD

The goal of this work is to introduce sparse matrix oper-
ations to HTM networks to be able to realize larger models.
Current implementations of the HTM network are not using
sparse matrix operations, and these are using array-of-objects
approach for storing cell connections. The proposed method is
evaluated on two types of data: real consumption time-series
and synthetic sinusoid data.

The first dataset is provided by Numenta called Hot Gym
[22]. It consists of hourly power consumption values measured
in kWh. The dataset is more than 4000 measurements long and
also comes with timestamps. By plotting the data the daily and
weekly cycles are clearly visible.

The second dataset is created by the timesynth Python
package producing 5000 data points of a sinusoid signal with
Gaussian noise.

A matrix implementation collects the segment and synapse
connections in an interpretable data format compared to
the array-of-objects approaches. The matrix implementation

2Comportex (Clojure), https://github.com/htm-community/comportex, Ac-
cess date: 14th April 2020

3https://github.com/vsraptor/bbhtm, Access date: 14th April 2020
4pyHTM, https://github.com/carver, Access date: 14th April 2020
5htm.core, https://github.com/htm-community/htm.core, Access date: 14th

April 2020
6HackTMM, https://github.com/glguida/hacktm, Access date: 14th April

2020
7HTM CLA, https://github.com/MichaelFerrier/HTMCLA, Access date:

14th April 2020
8ColriCl, https://github.com/Jontte/CortiCL, Access date: 14th April 2020
9Adaptive Sequence Memorizer, (ASM),https://github.com/ziabary/Adaptive-

Sequence-Memorizer, Access date: 14th April 2020
10Continuous HTM GPU (CHTMGPU),

https://github.com/222464/ContinuousHTMGPU, Access date: 14th April
2020

11Etaler, https://github.com/etaler/Etaler, Access date: 14th April 2020
12HTM.cuda, https://github.com/htm-community/htm.cuda, Access date:

14th April 2020
13Sanity, https://github.com/htm-community/sanity, Access date: 14th April

2020
14Tiny-HTM, https://github.com/marty1885/tiny-htm, Access date: 14th

April 2020

Performance Analysis of Sparse Matrix Representation in
Hierarchical Temporal Memory for Sequence Modeling

4Comportex (Clojure), https://github.com/htm-community/comportex,
Access date: 14th April 2020

5https://github.com/vsraptor/bbhtm, Access date: 14th April 2020
6pyHTM, https://github.com/carver, Access date: 14th April 2020
7htm.core, https://github.com/htm-community/htm.core, Access date: 14th

April 2020
8HackTMM, https://github.com/glguida/hacktm, Access date: 14th April

2020
9HTM CLA, https://github.com/MichaelFerrier/HTMCLA, Access date:

14th April 2020
10ColriCl, https://github.com/Jontte/CortiCL, Access date: 14th April 2020
11Adaptive Sequence Memorizer, (ASM),https://github.com/ziabary/

Adaptive-Sequence-Memorizer, Access date: 14th April 2020
12Continuous HTM GPU (CHTMGPU), https://github.com/222464/

ContinuousHTMGPU, Access date: 14th April 2020
13Etaler, https://github.com/etaler/Etaler, Access date: 14th April 2020
14HTM.cuda, https://github.com/htm-community/htm.cuda, Access date:

14th April 2020
15Sanity, https://github.com/htm-community/sanity, Access date: 14th April

2020
16Tiny-HTM, https://github.com/marty1885/tiny-htm, Access date: 14th

April 2020

INFOCOMMUNICATIONS JOURNAL

AUGUST 2020 • VOLUME XII • NUMBER 2 45

4) Temporal Memory: The Temporal Memory receives the
active columns as input and outputs the active cells which
represent the context of the input in those active columns. At
any given timestep the active columns tell what the network
sees and the active cells tell in what context the network sees
it.

A visualization of the Temporal Memory columns cells and
connections is provided in Figure 6.

Fig. 6. Temporal Memory connections

The cells in the Temporal Memory are binary, active or
inactive. Additionally, the network’s cells can be in a predictive
state based on their connections, which means activation
is anticipated in the next timestep for that cell. The cells
inside every column are also competing for activation. A
cell is activated if it is in an active column and was in a
predictive state in the previous timestep. The other cells can’t
get activated because of the inhibition.

The connections in the Temporal Memory between cells
are created during training, not initialized like in the Spatial
Pooler. When there is an unknown pattern none of the cells
become predictive in a given column. In this case bursting
happens. Bursting expresses the union of all possible context
representation in a column, so expresses that the network does
not know the context. To later recognize this pattern a winner
cell is needed to choose to represent the new pattern the
network encountered. The winner cells are chosen based on
two factors, matching segments and least used cells.

• If there is a cell in the column that has a matching
segment, it was almost activated. Therefore it should be
the representation of this new context.

• If there is no cell in the column with a matching segment,
the cell with the least segments should be the winner.

The training happens similarly to Spatial Pooler training.
The difference is that one cell has many segments connected
to it, and the synapses of these segments do not connect to
the previous layer’s output but other cells in the temporary
memory. The training also creates new segments and synapses
to ensure that the unknown patterns get recognized the next
time the network encounters them.

The synapse reinforcement is made on the segment that led
to the prediction of the cell. The synapses of that segment are
updated. Also if there were not enough active synapses, the
network grows new ones to previous active cells to ensure at
least the desired amount of active synapses.

In the case where the cell is bursting the training is different.
One cell must be chosen as winner cell. This cell will grow a

new segment, which in turn will place the cell in a similar
situation into the desired predictive state. The winner cell
can be the most active cell, that almost got into predictive
state, or the lowest utilized, in other words the cell that has
the fewest segments. Only winner cells are involved in the
training process. Correctly predicted cells are automatically
winner cells as well, so those are always trained. The new
segment will connect to some of the winner cells in the
previous timestep.

5) Segments, synapses and training: In the HTM network
segments and synapses connect the cells. Synapses start as
potential synapses. This means that a synapse is made to a cell,
but not yet strong enough to propagate the activation of the
cell. During training, this strength can change and above the
threshold the potential synapse becomes connected. A synapse
is active if it is connected to an active cell.

The visualization for the segments connection to cells is
provided in Figure 7 and the illustration for the synapses
connecting to segments is in Figure 8.

Fig. 7. Segment visualization

Fig. 8. Synapse visualization

Cells are connected to segments. The segments contain
synapses that connect to other cells. A segment’s activation
is also binary, either active or not. A segment becomes active
if enough of its synapses become active, this can be solved as
a summation across the segments.

In the Spatial Pooler, one cell has one segment connected
to it, so this is just like in a normal neural network. In the
Temporal Memory, one cell has multiple segments connected
to is. If any segment is activated, the cell becomes active
as well. This is like an or operation between the segment
activations. One segment can be viewed as a recognizer for a
similar subset of SDR representations.

Training of the HTM network is different from other neural
networks. In the network, all neurons, segments, and synapses
have binary activations. Since this network is binary, the
typical loss backpropagation method will not work in this case.
The training suited for such a network is Hebbian learning.
It is a rather simple unsupervised training method, where the

training occurs between neighboring layers only. The Hebbian
learning is illustrated in Figure 9.

Fig. 9. Visualization of Hebbian learning

• Only those synapses that are connected to an active cell
through a segment train.

• If one synapse is connected to an active cell, then
it contributed right to the activation of that segment.
Therefore its strength should be incremented.

• If one synapse is connected to an inactive cell, then it
did not contribute right to the activation of that segment.
Therefore its strength should be decreased.

C. HTM software solutions

There are HTM implementations maintained by Numenta,
which give the foundation for other implementations.

First, the NuPIC Core (Numenta Platform for Intelligent
Computing) is the C++ codebase of the official HTM projects.
It contains all HTM algorithms which can be used by other lan-
guage bindings. Any further bindings should be implemented
in this repository. This codebase implements the Network
API, which is the primary interface for creating whole HTM
systems. It will implement all algorithms for NuPIC but is
currently under transition. The implementation is currently a
failing build according to their CircleCI validation [19].

NuPIC is the Python implementation of the HTM algorithm.
It is also a Python binding to the NuPIC Core. This is the
implementation we choose as baseline. In addition to the
other repository’s Network API, this also has a High-level API
called the Online Prediction Framework (OPF). Through this
framework predictions can be made and also it can be also
used for anomaly detection. To optimize the network’s hyper-
parameters swarming can be implemented, which generates
multiple network versions simultaneously. The C++ codebase
can be used instead of the Python implementation if explicitly
specified by the user [18].

There is also an official and community-driven Java version
of the Numenta NuPIC implementation. This repository pro-
vides a similar interface as the Network API from NuPIC and
has comparable performance. The copyright was donated to
the Numenta group by the author [20].

Comportex is also an official implementation of HTM
using Clojure. It is not derived from NuPIC, it is a separate
implementation, originally based on the CLA whitepaper [21],
then also improved.

Comportex is more a library than a framework because of
Clojure. The user controls simulations and can extract useful

network information like the set of active cells. These variables
can be used to generate predictions or anomaly scores.2

There are also unofficial implementations, which are based
on the CLA whitepaper or the Numenta HTM implementa-
tions.

• Bare Bone Hierarchical Temporal Memory (bbHTM)3

• pyHTM4

• HTM.core5

• HackTM6

• HTM CLA7

• CortiCL8

• Adaptive Sequence Memorizer9

• Continuous HTM10

• Etaler11

• HTM.cuda12

• Sanity13

• Tiny-HTM14

III. PROPOSED METHOD

The goal of this work is to introduce sparse matrix oper-
ations to HTM networks to be able to realize larger models.
Current implementations of the HTM network are not using
sparse matrix operations, and these are using array-of-objects
approach for storing cell connections. The proposed method is
evaluated on two types of data: real consumption time-series
and synthetic sinusoid data.

The first dataset is provided by Numenta called Hot Gym
[22]. It consists of hourly power consumption values measured
in kWh. The dataset is more than 4000 measurements long and
also comes with timestamps. By plotting the data the daily and
weekly cycles are clearly visible.

The second dataset is created by the timesynth Python
package producing 5000 data points of a sinusoid signal with
Gaussian noise.

A matrix implementation collects the segment and synapse
connections in an interpretable data format compared to
the array-of-objects approaches. The matrix implementation

2Comportex (Clojure), https://github.com/htm-community/comportex, Ac-
cess date: 14th April 2020

3https://github.com/vsraptor/bbhtm, Access date: 14th April 2020
4pyHTM, https://github.com/carver, Access date: 14th April 2020
5htm.core, https://github.com/htm-community/htm.core, Access date: 14th

April 2020
6HackTMM, https://github.com/glguida/hacktm, Access date: 14th April

2020
7HTM CLA, https://github.com/MichaelFerrier/HTMCLA, Access date:

14th April 2020
8ColriCl, https://github.com/Jontte/CortiCL, Access date: 14th April 2020
9Adaptive Sequence Memorizer, (ASM),https://github.com/ziabary/Adaptive-

Sequence-Memorizer, Access date: 14th April 2020
10Continuous HTM GPU (CHTMGPU),

https://github.com/222464/ContinuousHTMGPU, Access date: 14th April
2020

11Etaler, https://github.com/etaler/Etaler, Access date: 14th April 2020
12HTM.cuda, https://github.com/htm-community/htm.cuda, Access date:

14th April 2020
13Sanity, https://github.com/htm-community/sanity, Access date: 14th April

2020
14Tiny-HTM, https://github.com/marty1885/tiny-htm, Access date: 14th

April 2020

network information like the set of active cells. These variables
can be used to generate predictions or anomaly scores.4
 There are also unofficial implementations, which are based
on the CLA whitepaper or the Numenta HTM implementations.
  Bare Bone Hierarchical Temporal Memory (bbHTM)3

  pyHTM4

  HTM.core5

  HackTM6

  HTM CLA7

  CortiCL8

  Adaptive Sequence Memorizer9

  Continuous HTM10

  Etaler11

  HTM.cuda12

  Sanity13

  Tiny-HTM14

training occurs between neighboring layers only. The Hebbian
learning is illustrated in Figure 9.

Fig. 9. Visualization of Hebbian learning

• Only those synapses that are connected to an active cell
through a segment train.

• If one synapse is connected to an active cell, then
it contributed right to the activation of that segment.
Therefore its strength should be incremented.

• If one synapse is connected to an inactive cell, then it
did not contribute right to the activation of that segment.
Therefore its strength should be decreased.

C. HTM software solutions

There are HTM implementations maintained by Numenta,
which give the foundation for other implementations.

First, the NuPIC Core (Numenta Platform for Intelligent
Computing) is the C++ codebase of the official HTM projects.
It contains all HTM algorithms which can be used by other lan-
guage bindings. Any further bindings should be implemented
in this repository. This codebase implements the Network
API, which is the primary interface for creating whole HTM
systems. It will implement all algorithms for NuPIC but is
currently under transition. The implementation is currently a
failing build according to their CircleCI validation [19].

NuPIC is the Python implementation of the HTM algorithm.
It is also a Python binding to the NuPIC Core. This is the
implementation we choose as baseline. In addition to the
other repository’s Network API, this also has a High-level API
called the Online Prediction Framework (OPF). Through this
framework predictions can be made and also it can be also
used for anomaly detection. To optimize the network’s hyper-
parameters swarming can be implemented, which generates
multiple network versions simultaneously. The C++ codebase
can be used instead of the Python implementation if explicitly
specified by the user [18].

There is also an official and community-driven Java version
of the Numenta NuPIC implementation. This repository pro-
vides a similar interface as the Network API from NuPIC and
has comparable performance. The copyright was donated to
the Numenta group by the author [20].

Comportex is also an official implementation of HTM
using Clojure. It is not derived from NuPIC, it is a separate
implementation, originally based on the CLA whitepaper [21],
then also improved.

Comportex is more a library than a framework because of
Clojure. The user controls simulations and can extract useful

network information like the set of active cells. These variables
can be used to generate predictions or anomaly scores.2

There are also unofficial implementations, which are based
on the CLA whitepaper or the Numenta HTM implementa-
tions.

• Bare Bone Hierarchical Temporal Memory (bbHTM)3

• pyHTM4

• HTM.core5

• HackTM6

• HTM CLA7

• CortiCL8

• Adaptive Sequence Memorizer9

• Continuous HTM10

• Etaler11

• HTM.cuda12

• Sanity13

• Tiny-HTM14

III. PROPOSED METHOD

The goal of this work is to introduce sparse matrix oper-
ations to HTM networks to be able to realize larger models.
Current implementations of the HTM network are not using
sparse matrix operations, and these are using array-of-objects
approach for storing cell connections. The proposed method is
evaluated on two types of data: real consumption time-series
and synthetic sinusoid data.

The first dataset is provided by Numenta called Hot Gym
[22]. It consists of hourly power consumption values measured
in kWh. The dataset is more than 4000 measurements long and
also comes with timestamps. By plotting the data the daily and
weekly cycles are clearly visible.

The second dataset is created by the timesynth Python
package producing 5000 data points of a sinusoid signal with
Gaussian noise.

A matrix implementation collects the segment and synapse
connections in an interpretable data format compared to
the array-of-objects approaches. The matrix implementation

2Comportex (Clojure), https://github.com/htm-community/comportex, Ac-
cess date: 14th April 2020

3https://github.com/vsraptor/bbhtm, Access date: 14th April 2020
4pyHTM, https://github.com/carver, Access date: 14th April 2020
5htm.core, https://github.com/htm-community/htm.core, Access date: 14th

April 2020
6HackTMM, https://github.com/glguida/hacktm, Access date: 14th April

2020
7HTM CLA, https://github.com/MichaelFerrier/HTMCLA, Access date:

14th April 2020
8ColriCl, https://github.com/Jontte/CortiCL, Access date: 14th April 2020
9Adaptive Sequence Memorizer, (ASM),https://github.com/ziabary/Adaptive-

Sequence-Memorizer, Access date: 14th April 2020
10Continuous HTM GPU (CHTMGPU),

https://github.com/222464/ContinuousHTMGPU, Access date: 14th April
2020

11Etaler, https://github.com/etaler/Etaler, Access date: 14th April 2020
12HTM.cuda, https://github.com/htm-community/htm.cuda, Access date:

14th April 2020
13Sanity, https://github.com/htm-community/sanity, Access date: 14th April

2020
14Tiny-HTM, https://github.com/marty1885/tiny-htm, Access date: 14th

April 2020

Performance Analysis of Sparse Matrix Representation in
Hierarchical Temporal Memory for Sequence Modeling

AUGUST 2020 • VOLUME XII • NUMBER 246

INFOCOMMUNICATIONS JOURNAL

achieves the same functionality as the baseline Numenta
codebase. The dense matrix implementation has a massive
memory consumption, that limits the size of the model. Sparse
matrix realization should decrease the required amount of
memory.

However, porting to a sparse solution is not straightforward
since the support of efficient sparse operations is far less than
regular linear algebra.

A. System design and implementation

In this section the implemented sparse HTM network de-
sign is introduced. Throughout the implementation the sparse
Python package Scipy.sparse was used, so first that package
is described in detail. Next, the four layers of the network
are presented, namely the SDR Scalar Encoder, the Spatial
Pooler, the Temporal Memory, and the SDR Scalar Decoder.
The detailed sparse implementations of these submodules are
described, with the matrix implementation in the focus. In this
part the sparse matrix and sparse tensor realizations are also
discussed.

B. Matrix implementation

As an initial step, a dense matrix implementation of the
NuPIC HTM network was designed and created, which allows
treating the HTM network the same as the other widely used
and well-optimized networks. While this step was necessary
for comparison, it is not suitable for large dataset, since the
size of these networks is much bigger compared to the LSTM
or CNN networks.

1) Spatial Pooler: The network interprets every input into
SDR representations which are represented as binary vectors.
Multiple inputs can be represented as binary matrices.

The Spatial Pooler columns are connected to the SDR
encoder through one segment and its synapses. These con-
nections can be expressed with a matrix, where every row
represents an input cell and every column represents a Spatial
Pooler column.

The synapse connections have strengths but are used in a
binary fashion based on synapse thresholds. Using the binary
input vector and the binary connection matrix the column
activations are calculated using matrix multiplication. The
active column are the ones with the top 2% activation.

2) Temporal Memory: In the Temporal Memory cells are
connected with other cells. In addition one cell can have
multiple segments, so there needs to be a matrix representing
every cells connections. For all the cells this results in a tensor,
the dimensions are the number of cells along two axis, and
the number of maximal segments per cell.

The calculation of cell activation has an extra step, because
of the multiple segments. First, the segment activation are
calculated for every cell using binary matrix multiplication just
as in the Spatial Pooler. These results combined are a matrix,
which dimensions are the number of cells times the number of
segments. After the activations are calculated, those segments
are activated that have above threshold activation values. This
results in a binary matrix. Then the cells that are set to be in

predictive state are the ones with at least one active segment,
with an or operation along the segment axis.

C. Sparse implementation

Using sparse matrices enables to better scale the network
compared to the dense matrix representation. In order to
introduce sparse matrix operations to the HTM we used
the Scipy.sparse Python package. However, there are missing
tensor operators, which were required to be implemented.

There are multiple ways of implementing a sparse matrix
representation – different formats can be used for different
use-cases. There is the compressed sparse row representation
(CSR). The row format is optimal for row-based access in
multiplying from the left. The pair of this format is the
compressed sparse column format (CSC), which is optimized
for column reading, like in right multiplication. From these,
the linked list format is beneficial, because it enables the
insertion of elements. In the other two cases, insertion is a
costly operation.

1) Sparse matrix: The network uses the Scipy.sparse pack-
age as the main method for matrix operations. This package
is extended for further use in the HTM network and also to
implement the sparse tensor class. It involves all the common
sparse matrix format, which are efficient in memory complex-
ity and have small overhead in computational complexity. This
computational complexity decreases as the matrix becomes
sparse enough (for matrix dot product around 10% is the
threshold).

The realized SparseMatrix class is a wrapper for the
Scipy.sparse Python module, extended with operators needed
for the Spatial Pooler like reshaping, handling of binary
activation matrices, logical operators along axis and random
element insertions.

2) Sparse tensor: Scipy does not have a sparse tensor
implementation. In our case the solution is a dictionary of
sparse matrices stacked together. The third dimension is also
sparse, it only has a sparse matrix at a given index if it contains
at least one nonzero value. The SparseTensor class uses the
SparseMatrix class, implementing the same operators.

After all the sparse implementation of the Spatial Pooler and
the Temporal Memory differ only in the used classes, since the
interfaces are shared across the two. The Spatial Pooler uses
sparse vectors as inputs and sparse matrices to store and train
the connections. The Temporal Memory receives the input
in sparse vectors and stores and trains the connections using
sparse tensors.

IV. EVALUATION AND RESULTS

We carried out experiments on two levels: on operation and
network levels. On operation level the dense and sparse real-
izations were compared in terms of speed and memory capac-
ity, while on the network level the training times and modeling
performance of different architectures were compared. In the
latter case four different networks were investigated: LSTM,
NuPIC HTM, dense HTM, and sparse HTM networks. The
baseline LSTM network consists of an LSTM layer with 100

cells and a dense layer also with 100 cells. The training data
was generated in autoregressive nature, i.e. with a receptive
field of 100 timesteps the network should predict the next
instance. The NuPIC HTM network consists of four modules:
an SDR Encoder, a Spatial Pooler, a Temporal Memory, and an
SDR Decoder(/Classifier). These are configured as the default
sizes by Numenta as having 2048 columns, 128 cells per
column and 128 maximum segments per cell in the Temporal
Memory.

A. Performance test of the operations

In order to understand the efficiency of the sparse implemen-
tation we investigated the scenarios in which the HTM network
utilizes sparse matrices. That involves the creation of matrices,
element wise product, dot-product, addition, subtraction, and
greater or less than operations. The measurements were carried
out using randomly generated matrices and tensors at fixed
sparsities.

The measurements shown in Table I are carried out on CPU
(Intel Core i5, 2 cores, 2GHz)and each represent an average of
1000 runs. Both the dense and sparse matrices are 1000x1000
in size with sparsity of 0.1%.

TABLE I
DENSE AND SPARSE ARITHMETIC MATRIX OPERATION EXECUTION TIMES

ON CPU (1000 SAMPLE AVERAGE)

Operation Dense time Sparse time

Addition 0.001080s 0.000418s
Subtraction 0.001104s 0.000413s
Dot-product 0.0545s 0.0012s

element wise product 0.001074s 0.000463s
Greater than 0.000672s 0.000252s

Less than 0.000649s 0.049147s

It is clear that the sparse version has an advantage for almost
all operators, however, the ”less than” operator lags behind
compared to the dense counterpart. This is because the result
has all the values set to true, which is not ideal for a sparse
representation. (true being a nonzero value) Still the execution
stores this as a sparse matrix which has a measurable overhead.

Next, to understand the efficiency of the sparse tensors we
measured the actual scenarios in which the HTM network uses
sparse matrices. That is the creation of tensors, element wise
product, dot-product, addition, subtraction, and greater or less
than operations.

The measurements are shown in Table II with the same
settings as before. Both the dense and sparse tensors’ shape
is 10x1000x1000 with sparsity of 1%.

These results show, that the sparse tensor is slower in
cases of addition and subtraction and element wise product.
However, this solution excels in dot product, which is the
operator needed to calculate activations for a given input. The
speedup here compared to the dense implementation is more
than a 1000 times. In the case of the less than operator the
implementation is also slower due to the same reasons as with
the sparse matrices.

TABLE II
DENSE AND SPARSE ARITHMETIC TENSOR OPERATION EXECUTION TIMES

ON CPU (1000 SAMPLE AVERAGE)

Operation Dense time Sparse time

Addition 0.0040s 0.0079s
Subtraction 0.0037s 0.0069s
Dot-product 33.29s 0.0262s

element wise product 0.0034s 0.0074s
Greater than 0.0022s 0.0038s

Less than 0.0015s 0.3393s

B. Performance test of HTM modules

In Table III each different module of the two networks were
measured on CPU. Each measurement represent an average
over 100 samples.

TABLE III
NUPIC AND SPARSE HTM MODULE EXECUTION TIMES ON CPU (100

SAMPLE AVERAGE)

Part of the network NuPIC Sparse HTM

SDR Encoder 0.000303s 0.000607s
Spatial Pooler 0.0179s 0.0139s

Temporal Memory 0,0136s 1.03s
SDR Decoder 0.000303s 0.24s

These results show that the proposed sparse implementation
has an advantage in the Spatial Pooler, where the inference is
more straightforward, so the sparse multiplication speedup can
be utilized. However, the Temporal Memory solution still lags
behind in execution time.

For the memory complexity the following network sizes are
applicable. These numbers are recommendations of Numenta,
and are based on their research. The number of columns is
a minimum requirement because of the sparse activation. The
other parameters have a specific capacity that can be further
fitted to a specific need. In general these values should work
without the network becoming too big in size and capacity. The
SDR size should be 100 with 9 active elements, the network
size is 2048 columns, 32 cells per column and 128 segments
per cell. The activation should be 40 columns in each timestep.
The values in Table IV are measured in the number of integer
values stored.

TABLE IV
MEMORY COMPLEXITY OF THE DIFFERENT NETWORK PARTS

Part of the network Dense HTM Sparse HTM

SDR Encoder output 100 27
Spatial Pooler connections 204800 12000

Spatial Pooler output 2048 120
Temporal Memory connections 5.49 * 1011 3.35 * 108 (max)

Temporal Memory output 65536 40-1280
SDR Decoder connections 6553600 65536 (max)

It is clear that, the sparse solution makes it possible to store
the network in a matrix format, since the Temporal Memory

Performance Analysis of Sparse Matrix Representation in
Hierarchical Temporal Memory for Sequence Modeling

INFOCOMMUNICATIONS JOURNAL

AUGUST 2020 • VOLUME XII • NUMBER 2 47

achieves the same functionality as the baseline Numenta
codebase. The dense matrix implementation has a massive
memory consumption, that limits the size of the model. Sparse
matrix realization should decrease the required amount of
memory.

However, porting to a sparse solution is not straightforward
since the support of efficient sparse operations is far less than
regular linear algebra.

A. System design and implementation

In this section the implemented sparse HTM network de-
sign is introduced. Throughout the implementation the sparse
Python package Scipy.sparse was used, so first that package
is described in detail. Next, the four layers of the network
are presented, namely the SDR Scalar Encoder, the Spatial
Pooler, the Temporal Memory, and the SDR Scalar Decoder.
The detailed sparse implementations of these submodules are
described, with the matrix implementation in the focus. In this
part the sparse matrix and sparse tensor realizations are also
discussed.

B. Matrix implementation

As an initial step, a dense matrix implementation of the
NuPIC HTM network was designed and created, which allows
treating the HTM network the same as the other widely used
and well-optimized networks. While this step was necessary
for comparison, it is not suitable for large dataset, since the
size of these networks is much bigger compared to the LSTM
or CNN networks.

1) Spatial Pooler: The network interprets every input into
SDR representations which are represented as binary vectors.
Multiple inputs can be represented as binary matrices.

The Spatial Pooler columns are connected to the SDR
encoder through one segment and its synapses. These con-
nections can be expressed with a matrix, where every row
represents an input cell and every column represents a Spatial
Pooler column.

The synapse connections have strengths but are used in a
binary fashion based on synapse thresholds. Using the binary
input vector and the binary connection matrix the column
activations are calculated using matrix multiplication. The
active column are the ones with the top 2% activation.

2) Temporal Memory: In the Temporal Memory cells are
connected with other cells. In addition one cell can have
multiple segments, so there needs to be a matrix representing
every cells connections. For all the cells this results in a tensor,
the dimensions are the number of cells along two axis, and
the number of maximal segments per cell.

The calculation of cell activation has an extra step, because
of the multiple segments. First, the segment activation are
calculated for every cell using binary matrix multiplication just
as in the Spatial Pooler. These results combined are a matrix,
which dimensions are the number of cells times the number of
segments. After the activations are calculated, those segments
are activated that have above threshold activation values. This
results in a binary matrix. Then the cells that are set to be in

predictive state are the ones with at least one active segment,
with an or operation along the segment axis.

C. Sparse implementation

Using sparse matrices enables to better scale the network
compared to the dense matrix representation. In order to
introduce sparse matrix operations to the HTM we used
the Scipy.sparse Python package. However, there are missing
tensor operators, which were required to be implemented.

There are multiple ways of implementing a sparse matrix
representation – different formats can be used for different
use-cases. There is the compressed sparse row representation
(CSR). The row format is optimal for row-based access in
multiplying from the left. The pair of this format is the
compressed sparse column format (CSC), which is optimized
for column reading, like in right multiplication. From these,
the linked list format is beneficial, because it enables the
insertion of elements. In the other two cases, insertion is a
costly operation.

1) Sparse matrix: The network uses the Scipy.sparse pack-
age as the main method for matrix operations. This package
is extended for further use in the HTM network and also to
implement the sparse tensor class. It involves all the common
sparse matrix format, which are efficient in memory complex-
ity and have small overhead in computational complexity. This
computational complexity decreases as the matrix becomes
sparse enough (for matrix dot product around 10% is the
threshold).

The realized SparseMatrix class is a wrapper for the
Scipy.sparse Python module, extended with operators needed
for the Spatial Pooler like reshaping, handling of binary
activation matrices, logical operators along axis and random
element insertions.

2) Sparse tensor: Scipy does not have a sparse tensor
implementation. In our case the solution is a dictionary of
sparse matrices stacked together. The third dimension is also
sparse, it only has a sparse matrix at a given index if it contains
at least one nonzero value. The SparseTensor class uses the
SparseMatrix class, implementing the same operators.

After all the sparse implementation of the Spatial Pooler and
the Temporal Memory differ only in the used classes, since the
interfaces are shared across the two. The Spatial Pooler uses
sparse vectors as inputs and sparse matrices to store and train
the connections. The Temporal Memory receives the input
in sparse vectors and stores and trains the connections using
sparse tensors.

IV. EVALUATION AND RESULTS

We carried out experiments on two levels: on operation and
network levels. On operation level the dense and sparse real-
izations were compared in terms of speed and memory capac-
ity, while on the network level the training times and modeling
performance of different architectures were compared. In the
latter case four different networks were investigated: LSTM,
NuPIC HTM, dense HTM, and sparse HTM networks. The
baseline LSTM network consists of an LSTM layer with 100

cells and a dense layer also with 100 cells. The training data
was generated in autoregressive nature, i.e. with a receptive
field of 100 timesteps the network should predict the next
instance. The NuPIC HTM network consists of four modules:
an SDR Encoder, a Spatial Pooler, a Temporal Memory, and an
SDR Decoder(/Classifier). These are configured as the default
sizes by Numenta as having 2048 columns, 128 cells per
column and 128 maximum segments per cell in the Temporal
Memory.

A. Performance test of the operations

In order to understand the efficiency of the sparse implemen-
tation we investigated the scenarios in which the HTM network
utilizes sparse matrices. That involves the creation of matrices,
element wise product, dot-product, addition, subtraction, and
greater or less than operations. The measurements were carried
out using randomly generated matrices and tensors at fixed
sparsities.

The measurements shown in Table I are carried out on CPU
(Intel Core i5, 2 cores, 2GHz)and each represent an average of
1000 runs. Both the dense and sparse matrices are 1000x1000
in size with sparsity of 0.1%.

TABLE I
DENSE AND SPARSE ARITHMETIC MATRIX OPERATION EXECUTION TIMES

ON CPU (1000 SAMPLE AVERAGE)

Operation Dense time Sparse time

Addition 0.001080s 0.000418s
Subtraction 0.001104s 0.000413s
Dot-product 0.0545s 0.0012s

element wise product 0.001074s 0.000463s
Greater than 0.000672s 0.000252s

Less than 0.000649s 0.049147s

It is clear that the sparse version has an advantage for almost
all operators, however, the ”less than” operator lags behind
compared to the dense counterpart. This is because the result
has all the values set to true, which is not ideal for a sparse
representation. (true being a nonzero value) Still the execution
stores this as a sparse matrix which has a measurable overhead.

Next, to understand the efficiency of the sparse tensors we
measured the actual scenarios in which the HTM network uses
sparse matrices. That is the creation of tensors, element wise
product, dot-product, addition, subtraction, and greater or less
than operations.

The measurements are shown in Table II with the same
settings as before. Both the dense and sparse tensors’ shape
is 10x1000x1000 with sparsity of 1%.

These results show, that the sparse tensor is slower in
cases of addition and subtraction and element wise product.
However, this solution excels in dot product, which is the
operator needed to calculate activations for a given input. The
speedup here compared to the dense implementation is more
than a 1000 times. In the case of the less than operator the
implementation is also slower due to the same reasons as with
the sparse matrices.

TABLE II
DENSE AND SPARSE ARITHMETIC TENSOR OPERATION EXECUTION TIMES

ON CPU (1000 SAMPLE AVERAGE)

Operation Dense time Sparse time

Addition 0.0040s 0.0079s
Subtraction 0.0037s 0.0069s
Dot-product 33.29s 0.0262s

element wise product 0.0034s 0.0074s
Greater than 0.0022s 0.0038s

Less than 0.0015s 0.3393s

B. Performance test of HTM modules

In Table III each different module of the two networks were
measured on CPU. Each measurement represent an average
over 100 samples.

TABLE III
NUPIC AND SPARSE HTM MODULE EXECUTION TIMES ON CPU (100

SAMPLE AVERAGE)

Part of the network NuPIC Sparse HTM

SDR Encoder 0.000303s 0.000607s
Spatial Pooler 0.0179s 0.0139s

Temporal Memory 0,0136s 1.03s
SDR Decoder 0.000303s 0.24s

These results show that the proposed sparse implementation
has an advantage in the Spatial Pooler, where the inference is
more straightforward, so the sparse multiplication speedup can
be utilized. However, the Temporal Memory solution still lags
behind in execution time.

For the memory complexity the following network sizes are
applicable. These numbers are recommendations of Numenta,
and are based on their research. The number of columns is
a minimum requirement because of the sparse activation. The
other parameters have a specific capacity that can be further
fitted to a specific need. In general these values should work
without the network becoming too big in size and capacity. The
SDR size should be 100 with 9 active elements, the network
size is 2048 columns, 32 cells per column and 128 segments
per cell. The activation should be 40 columns in each timestep.
The values in Table IV are measured in the number of integer
values stored.

TABLE IV
MEMORY COMPLEXITY OF THE DIFFERENT NETWORK PARTS

Part of the network Dense HTM Sparse HTM

SDR Encoder output 100 27
Spatial Pooler connections 204800 12000

Spatial Pooler output 2048 120
Temporal Memory connections 5.49 * 1011 3.35 * 108 (max)

Temporal Memory output 65536 40-1280
SDR Decoder connections 6553600 65536 (max)

It is clear that, the sparse solution makes it possible to store
the network in a matrix format, since the Temporal Memory

Performance Analysis of Sparse Matrix Representation in
Hierarchical Temporal Memory for Sequence Modeling

AUGUST 2020 • VOLUME XII • NUMBER 248

INFOCOMMUNICATIONS JOURNAL

part can easily exceed current hardware limitations. In the case
of NuPIC HTM the memory complexity estimation is harder,
since that uses array-of-objects structure.

TABLE V
TRAINING TIMES

Configuration Epochs Timesynth Hot Gym

LSTM 100 epochs 243s 318s
NuPIC HTM 1 epoch 130s 138s
NUPIC HTM 5 epochs 1706s 1028s

Last, the LSTM and HTM network predictions for different
datasets were investigated. The training times are shown in
Table V for the LSTM and NuPIC HTM solutions.

First, in Figure 10 the predictions for both LSTM and HTM
can be seen on the test part of Hot Gym dataset for the first
100 elements. The y-axis represents the power consumption
of the building. The figure presents the difference between the
LSTM and HTM predictions, where LSTM is less noisy and it
seems that it gives near naive predictions in some cases. The
HTM tends to follow better rapid changes.

In the case of train and test losses the HTM network is
not on par with the performance of the LSTM network. In
Table VI the performances are evaluated using the Hot Gym
test dataset. It shows that the LSTM maintains lower train
and test loss values than the HTM network. However, based
on the possible interval range and looking at the predictions
it is not clear that the HTM network is worse at predicting
this dataset (see Figure 10). On the other dataset the achieved
results are summarised in Table VII. In this case also the
LSTM has a lower training and testing mean squared error.
Looking at the predictions the network completely filters out
the high frequency part of the data and only retains the base
sinusoid signal in the predictions (see Figure 11).

TABLE VI
MINIMUM MSE VALUES FOR HOT GYM DATASET

Configuration Epochs Train MSE Test MSE

LSTM 100 0.1073 0.1658
NuPIC HTM 5 0.3762 0.4797

TABLE VII
MINIMUM MSE VALUES FOR TIMESYNTH DATASET

Configuration Epochs Train MSE Test MSE

LSTM 100 0.1603 0.1474
NuPIC HTM 5 0.4940 0.5069

In Figure 11 the predictions for both networks can be seen
on the synthetic (Timesynth) test dataset for the first 200
timesteps. In this case it is even more pronounced that the
LSTM network smooths the rapid changes in its predictions.
There is also a lag its predictions, that is seen as a shift in the
direction of the x-axis.

Fig. 10. Predictions for Hot Gym dataset

Fig. 11. Predictions for synthetic (Timesynth) data

In Figure 12 the outputs of HTM network are presented
after the first and last epoch of training on the Hot Gym test
dataset. It shows that the network is able to follow the main
cycles of the data from the first epoch. On the other hand in
Figure 13 this kind of progress is not that clear.

Fig. 12. Difference between first and last epoch for HTM on Hot Gym dataset

V. CONCLUSIONS

In this paper we investigated the sequence learning possibil-
ities of HTM network. The advantages and disadvantages of
different implementations surrounding the HTM network were
described and different HTM versions and an LSTM were
evaluated on a synthetic sequential dataset and on a real time-
series. A methodology of turning the implementation of the
HTM network to sparse matrix operations was proposed for
lower memory usage. We showed that the proposed method-
ology is feasible, it uses at least an order of magnitude less

part can easily exceed current hardware limitations. In the case
of NuPIC HTM the memory complexity estimation is harder,
since that uses array-of-objects structure.

TABLE V
TRAINING TIMES

Configuration Epochs Timesynth Hot Gym

LSTM 100 epochs 243s 318s
NuPIC HTM 1 epoch 130s 138s
NUPIC HTM 5 epochs 1706s 1028s

Last, the LSTM and HTM network predictions for different
datasets were investigated. The training times are shown in
Table V for the LSTM and NuPIC HTM solutions.

First, in Figure 10 the predictions for both LSTM and HTM
can be seen on the test part of Hot Gym dataset for the first
100 elements. The y-axis represents the power consumption
of the building. The figure presents the difference between the
LSTM and HTM predictions, where LSTM is less noisy and it
seems that it gives near naive predictions in some cases. The
HTM tends to follow better rapid changes.

In the case of train and test losses the HTM network is
not on par with the performance of the LSTM network. In
Table VI the performances are evaluated using the Hot Gym
test dataset. It shows that the LSTM maintains lower train
and test loss values than the HTM network. However, based
on the possible interval range and looking at the predictions
it is not clear that the HTM network is worse at predicting
this dataset (see Figure 10). On the other dataset the achieved
results are summarised in Table VII. In this case also the
LSTM has a lower training and testing mean squared error.
Looking at the predictions the network completely filters out
the high frequency part of the data and only retains the base
sinusoid signal in the predictions (see Figure 11).

TABLE VI
MINIMUM MSE VALUES FOR HOT GYM DATASET

Configuration Epochs Train MSE Test MSE

LSTM 100 0.1073 0.1658
NuPIC HTM 5 0.3762 0.4797

TABLE VII
MINIMUM MSE VALUES FOR TIMESYNTH DATASET

Configuration Epochs Train MSE Test MSE

LSTM 100 0.1603 0.1474
NuPIC HTM 5 0.4940 0.5069

In Figure 11 the predictions for both networks can be seen
on the synthetic (Timesynth) test dataset for the first 200
timesteps. In this case it is even more pronounced that the
LSTM network smooths the rapid changes in its predictions.
There is also a lag its predictions, that is seen as a shift in the
direction of the x-axis.

Fig. 10. Predictions for Hot Gym dataset

Fig. 11. Predictions for synthetic (Timesynth) data

In Figure 12 the outputs of HTM network are presented
after the first and last epoch of training on the Hot Gym test
dataset. It shows that the network is able to follow the main
cycles of the data from the first epoch. On the other hand in
Figure 13 this kind of progress is not that clear.

Fig. 12. Difference between first and last epoch for HTM on Hot Gym dataset

V. CONCLUSIONS

In this paper we investigated the sequence learning possibil-
ities of HTM network. The advantages and disadvantages of
different implementations surrounding the HTM network were
described and different HTM versions and an LSTM were
evaluated on a synthetic sequential dataset and on a real time-
series. A methodology of turning the implementation of the
HTM network to sparse matrix operations was proposed for
lower memory usage. We showed that the proposed method-
ology is feasible, it uses at least an order of magnitude less

part can easily exceed current hardware limitations. In the case
of NuPIC HTM the memory complexity estimation is harder,
since that uses array-of-objects structure.

TABLE V
TRAINING TIMES

Configuration Epochs Timesynth Hot Gym

LSTM 100 epochs 243s 318s
NuPIC HTM 1 epoch 130s 138s
NUPIC HTM 5 epochs 1706s 1028s

Last, the LSTM and HTM network predictions for different
datasets were investigated. The training times are shown in
Table V for the LSTM and NuPIC HTM solutions.

First, in Figure 10 the predictions for both LSTM and HTM
can be seen on the test part of Hot Gym dataset for the first
100 elements. The y-axis represents the power consumption
of the building. The figure presents the difference between the
LSTM and HTM predictions, where LSTM is less noisy and it
seems that it gives near naive predictions in some cases. The
HTM tends to follow better rapid changes.

In the case of train and test losses the HTM network is
not on par with the performance of the LSTM network. In
Table VI the performances are evaluated using the Hot Gym
test dataset. It shows that the LSTM maintains lower train
and test loss values than the HTM network. However, based
on the possible interval range and looking at the predictions
it is not clear that the HTM network is worse at predicting
this dataset (see Figure 10). On the other dataset the achieved
results are summarised in Table VII. In this case also the
LSTM has a lower training and testing mean squared error.
Looking at the predictions the network completely filters out
the high frequency part of the data and only retains the base
sinusoid signal in the predictions (see Figure 11).

TABLE VI
MINIMUM MSE VALUES FOR HOT GYM DATASET

Configuration Epochs Train MSE Test MSE

LSTM 100 0.1073 0.1658
NuPIC HTM 5 0.3762 0.4797

TABLE VII
MINIMUM MSE VALUES FOR TIMESYNTH DATASET

Configuration Epochs Train MSE Test MSE

LSTM 100 0.1603 0.1474
NuPIC HTM 5 0.4940 0.5069

In Figure 11 the predictions for both networks can be seen
on the synthetic (Timesynth) test dataset for the first 200
timesteps. In this case it is even more pronounced that the
LSTM network smooths the rapid changes in its predictions.
There is also a lag its predictions, that is seen as a shift in the
direction of the x-axis.

Fig. 10. Predictions for Hot Gym dataset

Fig. 11. Predictions for synthetic (Timesynth) data

In Figure 12 the outputs of HTM network are presented
after the first and last epoch of training on the Hot Gym test
dataset. It shows that the network is able to follow the main
cycles of the data from the first epoch. On the other hand in
Figure 13 this kind of progress is not that clear.

Fig. 12. Difference between first and last epoch for HTM on Hot Gym dataset

V. CONCLUSIONS

In this paper we investigated the sequence learning possibil-
ities of HTM network. The advantages and disadvantages of
different implementations surrounding the HTM network were
described and different HTM versions and an LSTM were
evaluated on a synthetic sequential dataset and on a real time-
series. A methodology of turning the implementation of the
HTM network to sparse matrix operations was proposed for
lower memory usage. We showed that the proposed method-
ology is feasible, it uses at least an order of magnitude less

Fig. 13. Difference between first and last epoch for HTM on synthetic
(Timesynth) dataset

memory than the dense implementation in the case where the
sparsity of the network is at 2%. Furthermore, the proposed
method’s performance remains comparable to the other HTM
implementation.

ACKNOWLEDGMENT

The research presented in this paper has been supported
by the European Union, co-financed by the European Social
Fund (EFOP-3.6.2-16-2017-00013), by the BME-Artificial In-
telligence FIKP grant of Ministry of Human Resources (BME
FIKP-MI/SC), by Doctoral Research Scholarship of Ministry
of Human Resources (ÚNKP-19-4-BME-189) in the scope
of New National Excellence Program and by János Bolyai
Research Scholarship of the Hungarian Academy of Sciences.

REFERENCES

[1] J. Hawkins, S. Ahmad, S. Purdy, and A. Lavin, “Biological and
machine intelligence (bami),” 2016, initial online release 0.4. [Online].
Available: http://numenta.com/biological-and-machine-intelligence/

[2] Numenta, “Numenta webpage,” https://numenta.com, 2019.
[3] ——, “Htm school,” https://www.youtube.com/playlist?list=

PL3yXMgtrZmDqhsFQzwUC9V8MeeVOQ7eZ9, 2018.
[4] A. v. d. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves,

N. Kalchbrenner, A. Senior, and K. Kavukcuoglu, “Wavenet: A gener-
ative model for raw audio,” arXiv preprint arXiv:1609.03499, 2016.

[5] M. Sundermeyer, R. Schlüter, and H. Ney, “Lstm neural networks for
language modeling,” in Thirteenth annual conference of the international
speech communication association, 2012.

[6] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, nov 1997. [Online].
Available: https://doi.org/10.1162%2Fneco.1997.9.8.1735

[7] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in neural information processing systems, 2017, pp. 5998–6008.

[8] S. R. Eddy, “Hidden markov models,” Current opinion in structural
biology, vol. 6, no. 3, pp. 361–365, 1996.

[9] J. Contreras, R. Espinola, F. Nogales, and A. Conejo, “ARIMA models
to predict next-day electricity prices,” IEEE Transactions on Power
Systems, vol. 18, no. 3, pp. 1014–1020, aug 2003. [Online]. Available:
https://doi.org/10.1109%2Ftpwrs.2002.804943

[10] P. Werbos, “Backpropagation through time: what it does and how to
do it,” Proceedings of the IEEE, vol. 78, no. 10, pp. 1550–1560, 1990.
[Online]. Available: https://doi.org/10.1109%2F5.58337

[11] Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, “Efficient
backprop,” in Neural networks: Tricks of the trade. Springer, 2012,
pp. 9–48.

[12] Y. LeCun, Y. Bengio et al., “Convolutional networks for images, speech,
and time series,” The handbook of brain theory and neural networks,
vol. 3361, no. 10, p. 1995, 1995.

[13] S. Hochreiter, “The vanishing gradient problem during learning
recurrent neural nets and problem solutions,” International
Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,
vol. 06, no. 02, pp. 107–116, apr 1998. [Online]. Available:
https://doi.org/10.1142%2Fs0218488598000094

[14] J. Koutnik, K. Greff, F. Gomez, and J. Schmidhuber, “A clockwork rnn,”
arXiv preprint arXiv:1402.3511, 2014.

[15] J. Chung, S. Ahn, and Y. Bengio, “Hierarchical multiscale recurrent
neural networks,” arXiv preprint arXiv:1609.01704, 2016.

[16] S. Merity, “Single headed attention rnn: Stop thinking with your head,”
arXiv preprint arXiv:1911.11423, 2019.

[17] Z. Yang, D. Yang, C. Dyer, X. He, A. Smola, and E. Hovy,
“Hierarchical attention networks for document classification,” in
Proceedings of the 2016 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies. Association for Computational Linguistics, 2016.
[Online]. Available: https://doi.org/10.18653%2Fv1%2Fn16-1174

[18] Numenta, “Nupic (python),” http://github.com/numenta/nupic, 2019.
[19] ——, “Nupic core (c++),” http://github.com/numenta/nupic.core, 2019.
[20] ——, “Htm.java,” http://github.com/numenta/htm.java, 2019.
[21] ——, “Htm cortical learning algorithms,” https://numenta.org/resources/

HTM CorticalLearningAlgorithms.pdf, 2011.
[22] ——, Hot Gym dataset, 2024 (ac-

cessed July 1, 2020). [Online]. Available:
https://github.com/numenta/nupic/blob/master/examples/opf/clients/
/hotgym/prediction/one gym/rec-center-hourly.csv

IEEEbiograph

Csongor Pilinszki-Nagy conducts research on arti-
ficial general intelligence methods since 2016. His
work consists of solutions using image recognition
by convolutional neural networks, building general
solutions in game environments using reinforcement
learning and researching unconventional methods
like Hierarchical Temporal Memory network. He ob-
tained his MSc degree in Computer Science from the
Budapest University of Technology and Economics
in January 2020.

Bálint Gyires-Tóth conducts research on fundamen-
tal and applied machine learning since 2007. With
his leadership, the first Hungarian hidden Markov-
model based Text-To-Speech (TTS) system was
introduced in 2008. He obtained his PhD degree
from the Budapest University of Technology and
Economics with summa cum laude in January 2014.
Since then, his primary research field is deep learn-
ing. His main research interests are sequential data
modeling with deep learning and deep reinforcement
learning. He also participates in applied deep learn-

ing projects, like time series classification and forecast, image and audio
classification and natural language processing. He was involved in various
successful research and industrial projects, including finance, fraud detection
and Industry 4.0. In 2017 he was certified as NVidia Deep Learning Institute
(DLI) Instructor and University Ambassador.

Performance Analysis of Sparse Matrix Representation in
Hierarchical Temporal Memory for Sequence Modeling

INFOCOMMUNICATIONS JOURNAL

AUGUST 2020 • VOLUME XII • NUMBER 2 49

part can easily exceed current hardware limitations. In the case
of NuPIC HTM the memory complexity estimation is harder,
since that uses array-of-objects structure.

TABLE V
TRAINING TIMES

Configuration Epochs Timesynth Hot Gym

LSTM 100 epochs 243s 318s
NuPIC HTM 1 epoch 130s 138s
NUPIC HTM 5 epochs 1706s 1028s

Last, the LSTM and HTM network predictions for different
datasets were investigated. The training times are shown in
Table V for the LSTM and NuPIC HTM solutions.

First, in Figure 10 the predictions for both LSTM and HTM
can be seen on the test part of Hot Gym dataset for the first
100 elements. The y-axis represents the power consumption
of the building. The figure presents the difference between the
LSTM and HTM predictions, where LSTM is less noisy and it
seems that it gives near naive predictions in some cases. The
HTM tends to follow better rapid changes.

In the case of train and test losses the HTM network is
not on par with the performance of the LSTM network. In
Table VI the performances are evaluated using the Hot Gym
test dataset. It shows that the LSTM maintains lower train
and test loss values than the HTM network. However, based
on the possible interval range and looking at the predictions
it is not clear that the HTM network is worse at predicting
this dataset (see Figure 10). On the other dataset the achieved
results are summarised in Table VII. In this case also the
LSTM has a lower training and testing mean squared error.
Looking at the predictions the network completely filters out
the high frequency part of the data and only retains the base
sinusoid signal in the predictions (see Figure 11).

TABLE VI
MINIMUM MSE VALUES FOR HOT GYM DATASET

Configuration Epochs Train MSE Test MSE

LSTM 100 0.1073 0.1658
NuPIC HTM 5 0.3762 0.4797

TABLE VII
MINIMUM MSE VALUES FOR TIMESYNTH DATASET

Configuration Epochs Train MSE Test MSE

LSTM 100 0.1603 0.1474
NuPIC HTM 5 0.4940 0.5069

In Figure 11 the predictions for both networks can be seen
on the synthetic (Timesynth) test dataset for the first 200
timesteps. In this case it is even more pronounced that the
LSTM network smooths the rapid changes in its predictions.
There is also a lag its predictions, that is seen as a shift in the
direction of the x-axis.

Fig. 10. Predictions for Hot Gym dataset

Fig. 11. Predictions for synthetic (Timesynth) data

In Figure 12 the outputs of HTM network are presented
after the first and last epoch of training on the Hot Gym test
dataset. It shows that the network is able to follow the main
cycles of the data from the first epoch. On the other hand in
Figure 13 this kind of progress is not that clear.

Fig. 12. Difference between first and last epoch for HTM on Hot Gym dataset

V. CONCLUSIONS

In this paper we investigated the sequence learning possibil-
ities of HTM network. The advantages and disadvantages of
different implementations surrounding the HTM network were
described and different HTM versions and an LSTM were
evaluated on a synthetic sequential dataset and on a real time-
series. A methodology of turning the implementation of the
HTM network to sparse matrix operations was proposed for
lower memory usage. We showed that the proposed method-
ology is feasible, it uses at least an order of magnitude less

Csongor Pilinszki-Nagy conducts research on artificial
general intelligence methods since 2016. His work
consists of solutions using image recognition by
convolutional neural networks, building general
solutions in game environments using reinforcement
learning and researching unconventional methods like
Hierarchical Temporal Memory network. He obtained
his MSc degree in Computer Science from the Budapest
University of Technology and Economics in January
2020. He is a member of the Balatonfüred Student
Research Group.

Bálint Gyires-Tóth conducts research on fundamental
and applied machine learning since 2007. With his
leadership, the first Hungarian hidden Markovmodel
based Text-To-Speech (TTS) system was introduced in
2008. He obtained his PhD degree from the Budapest
University of Technology and Economics with summa
cum laude in January 2014.
Since then, his primary research field is deep learning.
His main research interests are sequential data modeling
with deep learning and deep reinforcement learning. He

also participates in applied deep learning projects, like time series classification
and forecast, image and audio classification and natural language processing.
He was involved in various successful research and industrial projects,
including finance, fraud detection and Industry 4.0. In 2017 he was certified as
NVidia Deep Learning Institute (DLI) Instructor and University Ambassador.

Fig. 13. Difference between first and last epoch for HTM on synthetic
(Timesynth) dataset

memory than the dense implementation in the case where the
sparsity of the network is at 2%. Furthermore, the proposed
method’s performance remains comparable to the other HTM
implementation.

ACKNOWLEDGMENT

The research presented in this paper has been supported
by the European Union, co-financed by the European Social
Fund (EFOP-3.6.2-16-2017-00013), by the BME-Artificial In-
telligence FIKP grant of Ministry of Human Resources (BME
FIKP-MI/SC), by Doctoral Research Scholarship of Ministry
of Human Resources (ÚNKP-19-4-BME-189) in the scope
of New National Excellence Program and by János Bolyai
Research Scholarship of the Hungarian Academy of Sciences.

REFERENCES

[1] J. Hawkins, S. Ahmad, S. Purdy, and A. Lavin, “Biological and
machine intelligence (bami),” 2016, initial online release 0.4. [Online].
Available: http://numenta.com/biological-and-machine-intelligence/

[2] Numenta, “Numenta webpage,” https://numenta.com, 2019.
[3] ——, “Htm school,” https://www.youtube.com/playlist?list=

PL3yXMgtrZmDqhsFQzwUC9V8MeeVOQ7eZ9, 2018.
[4] A. v. d. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves,

N. Kalchbrenner, A. Senior, and K. Kavukcuoglu, “Wavenet: A gener-
ative model for raw audio,” arXiv preprint arXiv:1609.03499, 2016.

[5] M. Sundermeyer, R. Schlüter, and H. Ney, “Lstm neural networks for
language modeling,” in Thirteenth annual conference of the international
speech communication association, 2012.

[6] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, nov 1997. [Online].
Available: https://doi.org/10.1162%2Fneco.1997.9.8.1735

[7] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in neural information processing systems, 2017, pp. 5998–6008.

[8] S. R. Eddy, “Hidden markov models,” Current opinion in structural
biology, vol. 6, no. 3, pp. 361–365, 1996.

[9] J. Contreras, R. Espinola, F. Nogales, and A. Conejo, “ARIMA models
to predict next-day electricity prices,” IEEE Transactions on Power
Systems, vol. 18, no. 3, pp. 1014–1020, aug 2003. [Online]. Available:
https://doi.org/10.1109%2Ftpwrs.2002.804943

[10] P. Werbos, “Backpropagation through time: what it does and how to
do it,” Proceedings of the IEEE, vol. 78, no. 10, pp. 1550–1560, 1990.
[Online]. Available: https://doi.org/10.1109%2F5.58337

[11] Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, “Efficient
backprop,” in Neural networks: Tricks of the trade. Springer, 2012,
pp. 9–48.

[12] Y. LeCun, Y. Bengio et al., “Convolutional networks for images, speech,
and time series,” The handbook of brain theory and neural networks,
vol. 3361, no. 10, p. 1995, 1995.

[13] S. Hochreiter, “The vanishing gradient problem during learning
recurrent neural nets and problem solutions,” International
Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,
vol. 06, no. 02, pp. 107–116, apr 1998. [Online]. Available:
https://doi.org/10.1142%2Fs0218488598000094

[14] J. Koutnik, K. Greff, F. Gomez, and J. Schmidhuber, “A clockwork rnn,”
arXiv preprint arXiv:1402.3511, 2014.

[15] J. Chung, S. Ahn, and Y. Bengio, “Hierarchical multiscale recurrent
neural networks,” arXiv preprint arXiv:1609.01704, 2016.

[16] S. Merity, “Single headed attention rnn: Stop thinking with your head,”
arXiv preprint arXiv:1911.11423, 2019.

[17] Z. Yang, D. Yang, C. Dyer, X. He, A. Smola, and E. Hovy,
“Hierarchical attention networks for document classification,” in
Proceedings of the 2016 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies. Association for Computational Linguistics, 2016.
[Online]. Available: https://doi.org/10.18653%2Fv1%2Fn16-1174

[18] Numenta, “Nupic (python),” http://github.com/numenta/nupic, 2019.
[19] ——, “Nupic core (c++),” http://github.com/numenta/nupic.core, 2019.
[20] ——, “Htm.java,” http://github.com/numenta/htm.java, 2019.
[21] ——, “Htm cortical learning algorithms,” https://numenta.org/resources/

HTM CorticalLearningAlgorithms.pdf, 2011.
[22] ——, Hot Gym dataset, 2024 (ac-

cessed July 1, 2020). [Online]. Available:
https://github.com/numenta/nupic/blob/master/examples/opf/clients/
/hotgym/prediction/one gym/rec-center-hourly.csv

IEEEbiograph

Csongor Pilinszki-Nagy conducts research on arti-
ficial general intelligence methods since 2016. His
work consists of solutions using image recognition
by convolutional neural networks, building general
solutions in game environments using reinforcement
learning and researching unconventional methods
like Hierarchical Temporal Memory network. He ob-
tained his MSc degree in Computer Science from the
Budapest University of Technology and Economics
in January 2020.

Bálint Gyires-Tóth conducts research on fundamen-
tal and applied machine learning since 2007. With
his leadership, the first Hungarian hidden Markov-
model based Text-To-Speech (TTS) system was
introduced in 2008. He obtained his PhD degree
from the Budapest University of Technology and
Economics with summa cum laude in January 2014.
Since then, his primary research field is deep learn-
ing. His main research interests are sequential data
modeling with deep learning and deep reinforcement
learning. He also participates in applied deep learn-

ing projects, like time series classification and forecast, image and audio
classification and natural language processing. He was involved in various
successful research and industrial projects, including finance, fraud detection
and Industry 4.0. In 2017 he was certified as NVidia Deep Learning Institute
(DLI) Instructor and University Ambassador.

references

 [1] J. Hawkins, S. Ahmad, S. Purdy, and A. Lavin, “Biological and
machine intelligence (bami),” 2016, initial online release 0.4.
[Online].Available:

 http://numenta.com/biological-and-machine-intelligence/
 [2] Numenta, “Numenta webpage,” https://numenta.com, 2019.
 [3] ——, “Htm school,” https://www.youtube.com/playlist?list=PL3yX

MgtrZmDqhsFQzwUC9V8MeeVOQ7eZ9, 2018.
 [4] A. v. d. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A.

Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu, “Wavenet:
A generative model for raw audio,” arXiv preprint arXiv:1609.03499,
2016.

 [5] M. Sundermeyer, R. Schlüter, and H. Ney, “Lstm neural networks
for language modeling,” in Thirteenth annual conference of the
international speech communication association, 2012.

 [6] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, nov 1997. [Online].
Available: doi: 10.1162%2Fneco.1997.9.8.1735

 [7] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in
Advances in neural information processing systems, 2017, pp. 5998–
6008.

 [8] S. R. Eddy, “Hidden markov models,” Current opinion in structural
biology, vol. 6, no. 3, pp. 361–365, 1996.

 [9] J. Contreras, R. Espinola, F. Nogales, and A. Conejo, “ARIMA
models to predict next-day electricity prices,” IEEE Transactions on
Power Systems, vol. 18, no. 3, pp. 1014–1020, aug 2003. [Online].
Available: doi: 10.1109%2Ftpwrs.2002.804943

 [10] P. Werbos, “Backpropagation through time: what it does and how to
do it,” Proceedings of the IEEE, vol. 78, no. 10, pp. 1550–1560, 1990.
[Online]. Available: doi: 10.1109%2F5.58337

[11] Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, “Efficient
backprop,” in Neural networks: Tricks of the trade. Springer, 2012,
pp. 9–48.

[12] Y. LeCun, Y. Bengio et al., “Convolutional networks for images,
speech, and time series,” The handbook of brain theory and neural
networks, vol. 3361, no. 10, p. 1995, 1995.

[13] S. Hochreiter, “The vanishing gradient problem during learning
recurrent neural nets and problem solutions,” International Journal
of Uncertainty, Fuzziness and Knowledge-Based Systems, vol. 06, no.
02, pp. 107–116, apr 1998. [Online]. Available:

 doi: 10.1142%2Fs0218488598000094
[14] J. Koutnik, K. Greff, F. Gomez, and J. Schmidhuber, “A clockwork

rnn,” arXiv preprint arXiv:1402.3511, 2014.
[15] J. Chung, S. Ahn, and Y. Bengio, “Hierarchical multiscale recurrent

neural networks,” arXiv preprint arXiv:1609.01704, 2016.
[16] S. Merity, “Single headed attention rnn: Stop thinking with your

head,” arXiv preprint arXiv:1911.11423, 2019.
[17] Z. Yang, D. Yang, C. Dyer, X. He, A. Smola, and E. Hovy,

“Hierarchical attention networks for document classification,” in
Proceedings of the 2016 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies. Association for Computational Linguistics, 2016.
[Online]. Available: doi: 10.18653%2Fv1%2Fn16-1174

[18] Numenta, “Nupic (python),” http://github.com/numenta/nupic, 2019.
[19] ——, “Nupic core (c++),” http://github.com/numenta/nupic.core,

2019.
[20] ——, “Htm.java,” http://github.com/numenta/htm.java, 2019.
[21] ——, “Htm cortical learning algorithms,” https://numenta.org/

resources/HTM_CorticalLearningAlgorithms.pdf, 2011.
[22] ——, Hot Gym dataset, 2024 (accessed July 1, 2020). [Online].

Available: https://github.com/numenta/nupic/blob/master/examples/
opf/clients//hotgym/prediction/one_gym/rec-center-hourly.csv

IEEEbiograph

Acknowledgment

The research has been supported by the European Union,
co-financed by the European Social Fund (EFOP-3.6.2-16-
2017-00013, Thematic Fundamental Research Collaborations
Grounding Innovation in Informatics and Infocommunications),
by the BME-Artificial Intelligence FIKP grant of Ministry of
Human Resources (BME FIKP-MI/SC), by Doctoral Research
Scholarship of Ministry of Human Resources (ÚNKP-19-4-
BME-189) in the scope of New National Excellence Program
and by János Bolyai Research Scholarship of the Hungarian
Academy of Sciences.

http://numenta.com/biological-and-machine-intelligence/
https://numenta.com, 2019
https://www.youtube.com/playlist%3Flist%3DPL3yXMgtrZmDqhsFQzwUC9V8MeeVOQ7eZ9
https://www.youtube.com/playlist%3Flist%3DPL3yXMgtrZmDqhsFQzwUC9V8MeeVOQ7eZ9
https://doi.org/10.1162%252Fneco.1997.9.8.1735
https://doi.org/10.1109%252Ftpwrs.2002.804943
https://doi.org/10.1109%252F5.58337
https://doi.org/10.1142%252Fs0218488598000094
https://doi.org/10.18653%252Fv1%252Fn16-1174
http://github.com/numenta/nupic.core
http://github.com/numenta/htm.java
https://numenta.org/resources/HTM_CorticalLearningAlgorithms.pdf
https://numenta.org/resources/HTM_CorticalLearningAlgorithms.pdf
https://github.com/numenta/nupic/blob/master/examples/opf/clients//hotgym/prediction/one_gym/rec-center-hourly.csv
https://github.com/numenta/nupic/blob/master/examples/opf/clients//hotgym/prediction/one_gym/rec-center-hourly.csv

